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Abstract

We give a characterisation of all finite groups whose subgroup lattice does not contain a sublattice
isomorphic to M9.

1. Introduction

For a finite group G, the subgroup lattice L(G) is the partially ordered set of subgroups of G, where the
partial ordering is inclusion. It can be represented by a diagram that is known as the Hasse diagram
(or Hasse graph) of the group G.
An old question, going back to 1928 (Rottlaender), asks: What properties of a finite group can be
deduced from its subgroup lattice? For example, the subgroup lattice does not indicate whether or not
a group is abelian, as can be seen from the subgroup lattices of an elementary abelian group of order
9 and the symmetric group S3. Subgroup lattices have been widely studied and we refer the reader to
[6] and [4] for further results and background information.
In this paper we classify all finite groups whose subgroup lattice does not contain the following lattice
as a sublattice:
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Figure 1. The lattice M9

This is part of a programme to classify finite groups whose subgroup lattice does not contain a certain
sublattice of the subgroup lattice L10 of the dihedral group D8. For the sublattices L5, L6, L7, L8 and
M8 this had already been completed, but so far M9 and L9 were missing. There are partial results
available for L10 (see [5]).
After some preliminaries, we look at the relationship between M9-free groups and L8-free groups, where
L8 is the following lattice:
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Figure 2. The lattice L8
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As L8 is a sublattice of M9, the classification of L8-free groups (see [1]) is an important tool in our
analysis. In Section 3 we classify M9-free groups whose order is divisible by exactly two different primes
and this turns out to be the crucial step towards the general classification in Section 4.
There are numerous places where our arguments follow those in [1].
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2. Preliminaries

Throughout this paper we use the standard notation for lattices as in [4] and standard group theory
notation as, for example, in [3]. Moreover G always denotes a finite group and p, q and r are always
prime numbers. Whenever the primes p and q appear, we suppose automatically that they are distinct.

Definition 2.1. We write L(G) for the subgroup lattice of G, i.e. the set of subgroups of G with
inclusion. In this lattice, the infimum of two elements is their intersection and the supremum is the
subgroup that they generate.
If L is any lattice, then we say that G is L-free if and only if L(G) does not contain a sublattice that
is isomorphic to L.

Whenever we deal with a group G where L(G) contains a sublattice isomorphic to M9, we use the
notation from Figure 1 for the names of the corresponding subgroups.

Remark 2.2. If H ≤ G, then L(H) is a sublattice of L(G). In particular, if L is any lattice and G is
L-free, then also H is L-free. Moreover, if N EG, then L(G/N) is isomorphic to a sublattice of L(G)
and hence, if G is L-free, then also G/N is L-free.

Definition 2.3. A lattice L is called modular if and only if for all X,Y, Z ∈ L, with X ≤ Z, the
following holds:

(X ∪ Y ) ∩ Z = X ∪ (Y ∩ Z).

We say that G is modular if and only if its subgroup lattice is modular.

Lemma 2.4. If G is abelian, then G is modular.

Proof. If G is abelian, then all subgroups of G are normal in G, so Dedekind’s modular law yields the
assertion. �

Lemma 2.5. [4, Lemma 2.3.2]
A p-group G is modular if and only if any two subgroups of G permute (as sets).

Theorem 2.6. [3, 8.3.3]
Suppose that A is an abelian group that acts irreducibly on an elementary abelian group V . Then
A/CA(V ) is cyclic.

Lemma 2.7. [4, Lemma 4.1.1(b)]
Suppose that H ≤ G and that N E G is such that N ∩ H = 1. Then, for all x ∈ N , we have that
H ∩Hx = CH(x).

We describe an example of an M9-free group that will play a role in our analysis later on. But before, we
recall what it means for a sublattice of L(G) to be isomorphic toM9. LetM := {E,S, T,D,U, V,A,C, F}
be a subset of L(G) such that |M | = 9 and let L denote the generated sublattice of L(G). Then Figure
1 indicates that L is isomorphic to M9 if and only if the following hold:

(i) T ∩ S = T ∩D = S ∩D = U ∩D = V ∩D = U ∩ V = E
(ii) 〈T, S〉 = 〈D,S〉 = 〈T,D〉 = A

(iii) 〈U, V 〉 = 〈U,D〉 = 〈V,D〉 = C
(iv) A ∩ C = D
(v) 〈U, S〉 = 〈U, T 〉 = 〈V, S〉 = 〈V, T 〉 = 〈A,C〉 = F .
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Example 2.8. Suppose that G = D12. Then G is M9-free, but not L8-free. Let v, r ∈ G be such that
o(v) = 2, o(r) = 6 and G = 〈v, r〉. Here is a picture of L(G):

1

〈v〉 〈rv〉〈r2v〉 〈r3v〉〈r4v〉 〈r5v〉〈r3〉

〈r2〉

〈r3, v〉
〈r3, rv〉

〈r3, r2v〉

〈r〉〈r2, v〉
〈r2, rv〉

G

Figure 3. Subgroup lattice of D12

The sublattice generated by {1, 〈v〉, 〈r2v〉, 〈r2〉, 〈rv〉, 〈v, r2〉, 〈r2, rv〉, G} is isomorphic to L8.
We explain briefly why G is M9-free. Assume otherwise, which means that L(G) has a sublattice
isomorphic to M9 with our standard notation. Then in particular G has subgroups S, T < A < F ≤ G
and U, V < C < F such that 〈S,U〉 = 〈S, V 〉 = 〈U, T 〉 = 〈V, T 〉 = F . This implies that F = G and
that S, T, U and V are subgroups of order at most 3. The subgroup generated by r2 and any involution
of G is a proper subgroup of G, and therefore S, T, U and V have order 2. By assumption S and U
generate G, but then 〈T,U〉 has order 4 or 6, which is impossible.

Theorem 2.9. ([4], Theorem 2.1.2)
L(G) is modular if and only if L(G) is L5-free.

Lemma 2.10. Suppose that L is a lattice and that L5 ≤ L ≤ L10. Let G be a p-group. Then G is
modular if and only if it is L-free. In particular, for p-groups, being L5-free and being L10-free are
equivalent.

Proof. This is a combination of Theorem 2.9 and Lemma 2.1 in [5]. �

For the following lemma we recall that, if G is a p-group and i ∈ N, then Ωi(G) := 〈x ∈ G | xpi = 1〉
and Ω(G) := Ω1(G).

Lemma 2.11. ([4], Lemma 2.3.5)

Suppose that G is a modular p-group. Then Ω(G) is elementary abelian and Ωi(G) = {x ∈ G | xpi = 1}
for all i ∈ N.
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Lemma 2.12. ([4], Lemma 2.3.6)
Suppose that G is a modular 2-group. Then all the subgroups of G are normalised by 〈x ∈ G | x4 = 1〉.

Definition 2.13. We say that G is hamiltonian if and only if G is non-abelian and every subgroup of
G is normal in G.

Theorem 2.14. ([4], Theorem 2.3.12)
Suppose that G is a p-group. All subgroups of G are normal in G if and only if G is abelian or G has
an elementary abelian 2-group A such that G ∼= Q8 ×A.

Theorem 2.15. ([4], Theorem 2.3.8)
Suppose that G is a modular 2-group and that G involves Q8. Then G has an elementary abelian
2-subgroup A such that G ∼= Q8 ×A.

Corollary 2.16. If G is a non-hamiltonian modular p-group, then all non-trivial subgroups of G are
also non-hamiltonian.

Proof. Assume otherwise and choose G to be a counter-example. Let U ≤ G be hamiltonian (hence
non-abelian) and non-trivial. Then Theorem 2.14 yields that U has an elementary abelian 2-subgroup
A such that U ∼= Q8×A. So G involves Q8 and Theorem 2.15 is applicable. Then G has an elementary
abelian 2-subgroup B such that G ∼= Q8 × B. Theorem 2.14 implies that G is hamiltonian, contrary
to our hypothesis. �

Lemma 2.17. ([5], Lemma 2.2)
Suppose that G is L10-free, that P is a normal p-subgroup of G and that K is a p′-subgroup of G such
that G = PK. Then the following hold:

(i) [P,K] is elementary abelian or a hamiltonian 2-group.
(ii) If [P,K] is elementary abelian, then P = CP (K)× [P,K].

Theorem 2.18. ([5], Proposition 2.7)
Suppose that G is an L10-free {p, q}-group. Let P ∈ Sylp(G) and Q ∈ Sylq(G). Then P EG or QEG.

Theorem 2.19. ([5], Proposition 2.6)
Suppose that G is an L10-free {p, q}-group. Suppose that P ∈ Sylp(G) is normal in G and let Q ∈ Sylq(G).
Suppose further that [P,Q] 6= 1. Then one of the following holds:

(i) Q is cyclic.
(ii) Q ∼= Q8.

(iii) p = 3 and q = 2.

Theorem 2.20. ([5], Theorem A)
If G is L10-free, then G is soluble.

We use in Section 4 that, as a consequence of Theorem 2.20, all L10-free groups have a Sylow system.

Lemma 2.21. ([5], Lemma 2.5)
Suppose that G is a dihedral group. Then G is L10-free if and only if there is a prime p such that
|G| = 2p or |G| = 12.

Lemma 2.22. ([5], Lemma 2.8)
Suppose that G has normal p-subgroups N1, N2 and a cyclic q-subgroup Q such that G = (N1×N2)Q.
Suppose that Q acts irreducibly on N1 and N2 and that CQ(N1) = CQ(N2). If G is L10-free, then
|N1| = |N2| = p and Q induces power automorphisms on N1 ×N2.

Lemma 2.23. ([1], Lemma 2.1)
Suppose that P is a normal p-subgroup of G and that Q is a q-subgroup of G such that [P,Q] 6= 1 and
G = PQ. If P is not hamiltonian, then the following are equivalent:

(i) G is L7-free.
(ii) G is L8-free.

(iii) G is M8-free.
(iv) One of the following holds:
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(a) P is elementary abelian, Q is cyclic and all subgroups of Q act irreducibly on P or by
inducing power automorphisms.

(b) P is elementary abelian of order p2, where p ≡ 3 (mod 4). Moreover Q ∼= Q8 and Q acts
faithfully on P .

Lemma 2.24. ([1], Lemma 2.2)
Suppose that q is odd, that P is a hamiltonian normal 2-subgroup of G and that Q is a q-subgroup of
G such that [P,Q] 6= 1 and G = PQ. Then the following hold:

(i) G is L8-free if and only if P ∼= Q8 and Q is cyclic with [Q : CQ(P )] = 3.
(ii) G is not M8-free.

Theorem 2.25. ([1], Proposition 2.3)
Suppose that G is a {p, q}-group and that G is L8-free or M8-free. Then G is nilpotent or its structure
is as described in Lemmas 2.23 and 2.24.

Corollary 2.26. ([1], Corollary 2.4)
Suppose that G is a {p, q}-group and that G is L8-free or M8-free. Let P ∈ Sylp(G) and Q ∈ Sylq(G)
and suppose that Q is not normal in G. Then G = 〈Qx | x ∈ P 〉.

Definition 2.27. We say that G is a Λ∗-group if and only if there are n ∈ N and pairwise distinct prime
numbers p1, ..., pn, q such that the following hold:

(i) Q ≤ G is a cyclic q-subgroup;
(ii) for all i ∈ {1, ..., n} there is a normal pi-subgroup Pi of G;

(iii) G = (P1 × ...× Pn)Q;
(iv) if i, j ∈ {1, ..., n} are distinct, then CQ(Pi) 6= CQ(Pj); and
(v) if i ∈ {1, ..., n}, then either Pi ∼= Q8 or Pi is elementary abelian and all subgoups of Q act

irreducibly or by inducing power automorphisms on Pi.

Whenever we formulate a hypothesis with a Λ∗-group G, then we will use all the notation that we just
introduced.

Corollary 2.28. Suppose that G is a Λ∗-group with the corresponding notation.
Then G = 〈Qx | x ∈ P1 × ...× Pn〉.

Proof. Let i ∈ {1, ..., n}. It follows from 2.23 and 2.24 and the hypotheses about Q and Pi that QPi is
L8-free and has order divisible by exactly two distinct primes. Thus Corollary 2.26 is applicable and it
yields that QPi = 〈Qx | x ∈ Pi〉. This implies that G = 〈QP1, ..., QPn〉 = 〈Qx | x ∈ P1 × ...× Pn〉. �

Theorem 2.29. ([1], Theorem A)
The group G is L8-free if and only if there exist n ∈ N and subgroups G1, ..., Gn of G with pairwise
coprime orders such that the following hold:
– G = G1 × ...×Gn;
– for all k ∈ {1, ..., n}, the group Gk is a modular p-group, a Λ∗-group or a {2, p}-group satisfying
Lemma 2.23 (iv)(b).

3. M9-free {p, q}-groups

As in [1], our classification of M9-free groups begins with the special case where G is a {p, q}-group.
In fact this is where most work is necessary, and then the general results follow in the next section. It
turns out that it is key to characterise those groups that are M9-free, but not L8-free.

Lemma 3.1. Suppose that G is a {p, q}-group and that G is M9-free and not nilpotent. Suppose further
that P ∈ Sylp(G) is normal in G and let Q ∈ Sylq(G).
If P is not hamiltonian, then G is L8-free or p = 3, q = 2 and G has a section isomorphic to D12.

5



Proof. Assume otherwise and let G be a minimal counter-example. Then G is not L8-free and hence
G does not satisfy Lemma 2.23 (iv). If p = 3 and q = 2, then G does not involve D12. In particular all
subgroups and sections of G do not involve D12, so if they are proper and satisfy the hypothesis, then
the minimality of G implies that they are L8-free.
Then Lemma 2.10 yields that P and Q are modular. Moreover P is not hamiltonian and thus Corol-
lary 2.16 gives that [P,Q] is not hamiltonian. It follows with Lemma 2.17 that [P,Q] is elementary
abelian and P = CP (Q)× [P,Q]. Now we proceed in a series of steps in order to obtain a contradiction.

(1) Q is not isomorphic to Q8.
Proof. Assume otherwise. Then Φ(Q) = Z(Q), in particular Q/Φ(Q) ∼= V4. If Φ(Q) E G, then by
minimality of G the section G/Φ(Q) is L8-free and satisfies Lemma 2.23 (iv). This is impossible
because Q/Φ(Q) is neither cyclic nor isomorphic to Q8. So Φ(Q) is not normal in G.
Let z denote the central involution in Q. Since z /∈ Z(G), we know that [P, z] 6= 1 and Q acts faithfully
on P . Hence if we let Q0 denote a subgroup of Q of order 4, then [P,Q0] 6= 1. The minimal choice of
G yields that PQ0 is L8-free and satisfies Lemma 2.23 (iv). In particular Q0 acts irreducibly on P or
by inducing power automorphisms.
The group of power automorphisms of P is abelian and Q is not, so there exists a maximal subgroup
U of Q that acts irreducibly on P . Moreover U acts faithfully on P because Q does. Since p is odd,
one of p − 1 or p + 1 is divisible by 4 and therefore |U | = 4 divides p2 − 1 = (p − 1) · (p + 1). Now
II.3.10 in [2] yields that |P | = p2 and that 4 does not divide p − 1. Hence p ≡ 3 modulo 4 and in
particular Case (iv)(b) of Lemma 2.23 is satisfied. But then G is L8-free, contrary to our assumption.

(2) Q is cyclic.
Proof. Assume otherwise. Then Theorem 2.19 and (1) imply that p = 3 and q = 2. The non-trivial
action of Q on P yields an element x ∈ Q such that [P, x] 6= 1. Since Q is neither cyclic nor isomorphic
to Q8, there exists some y ∈ Q of order 2 and such that y /∈ 〈x〉. In particular 〈x, y〉 is also neither
cyclic nor isomorphic to Q8 and therefore P 〈x, y〉 does not satisfy Lemma 2.23 (iv) and is hence not
L8-free. The minimality of G yields that Q = 〈x, y〉. Then it follows with Lemma 2.11 that Ω(Q) is
elementary abelian and Ω(Q) = {g ∈ Q|gq = 1}.
Assume that o(x) > 2, so in particular x /∈ Ω(Q). Then Ω(Q) 6= Q and Ω(Q) contains at least
three involutions, so it is neither cyclic nor isomorphic to Q8. Moreover PΩ(Q) < G and hence this
subgroup is L8-free by our minimal choice of G and Lemma 2.23 implies that PΩ(Q) is nilpotent. Now
X := Ω(〈x〉) ≤ Ω(Q) is centralised by y ∈ Ω(Q) whence X E Q (recall that Q = 〈x, y〉). Moreover
P centralises X and therefore X E G. But Q/X is neither cyclic nor isomorphic to Q8, so the factor
group G/X does not satisfy Lemma 2.23 (iv) and in particular it is not L8-free. This contradicts the
minimal choice of G.
We conclude that o(x) = 2 and |Q| = 4. Let D ≤ [P,Q] be such that Q acts irreducibly on D. Since
P = CP (Q) × [P,Q], we know that Q acts without fixed points on [P,Q] and hence on D. Theorem
2.6 implies that Q/CQ(D) is cyclic and that Q acts non-faithfully on D. Let a, b ∈ Q# be such that
Q = 〈a, b〉 and [D, a] = 1, but [D, b] 6= 1. Then b acts without fixed points on D, so it inverts D and
the irreducible action of Q on D forces |D| = 3. In particular DQ ∼= D12, contrary to our assumption.
Thus Q is cyclic as stated.

(3) CP (Q) 6= 1.
Proof. Assume that this is false. Then P = CP (Q)× [P,Q] = [P,Q] whence P is elementary abelian.
With Maschke’s Theorem we let m ∈ N and N1, . . . , Nm ≤ [P,Q] be such that [P,Q] = N1 × . . .×Nm
and such that Q acts irreducibly on N1, ..., Nm. First suppose that m ≥ 3 and let 2 ≤ i ≤ m. Then the
subgroup (N1×Ni)Q is L8-free, because G is a minimal counter-example. But Q is not irreducible on
N1 ×Ni, so by Lemma 2.23 Q induces power automorphisms on N1 ×Ni. Therefore Q induces power
automorphisms on P and it follows by the same lemma that G is L8-free. This is a contradiction and
therefore m ≤ 2.
Suppose that m = 2. Since Q is cyclic, we may without loss suppose that CQ(N1) ≤ CQ(N2). If CQ(N2)
induces power automorphisms on P , then these are universal, so in particular CQ(N1) = CQ(N2). But
then Q induces power automorphisms on P by Lemma 2.22 and Lemma 2.23 implies that G is L8-free,
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contrary to our assumption. Therefore CQ(N2) does not induce power automorphisms on P . It also
does not act irreducibly because it leaves N1 invariant. Hence Lemma 2.23 yields that PCQ(N2) is not
L8-free, and by minimality we deduce that CQ(N2) = Q. However CP (Q) = 1 by assumption, so this
is impossible.
Therefore m = 1, which means that Q acts irreducibly on P . The minimal choice of G forces all
subgroups of Q to act on P as in Lemma 2.23, so this lemma implies that G is L8-free, contrary to
our hypothesis. This contradiction shows that CP (Q) 6= 1.

(4) |CP (Q)| = p and Q acts irreducibly on [P,Q].
Proof. With Maschke’s Theorem let m ∈ N and N1, . . . , Nm ≤ [P,Q] be such that [P,Q] = N1× . . .×
Nm and that Q acts irreducibly on N1, ..., Nm. Using (3) we choose M ≤ CP (Q) of order p and we set
N := N1. Now N and M commute and are both Q-invariant.
Assume that Q induces power automorphisms on M ×N . Then these are universal and in particular
CQ(M) = CQ(N). It follows that Q centralises N , which is a contradiction.
Since M is Q-invariant, we also have that Q acts non-irreducibly on M ×N . Thus (M ×N)Q is not
L8-free by Lemma 2.23. Then the minimality of G implies that (M ×N)Q = G, but also G = PQ and
therefore M ×N = P . In particular P is elementary abelian.
Since M ≤ CP (Q), the Dedekind identity gives that CP (Q) = M × CN (Q) = M . We also see that
N = [P,Q] and hence Q acts irreducibly on [P,Q].

(5) |Q| = q.
Proof. We set N := [P,Q] and M := CP (Q), and we recall that Q is cyclic by (2). We assume that
|Q| > q and that the subgroup Q0 := Φ(Q) of Q of index q does not centralise P . If Q0 induces power
automorphisms on P , then they are universal and hence Q0 centralises P by (3). This contradicts our
assumption that [Q0, P ] 6= 1. Since M is Q0-invariant, we also know that Q0 does not act irreducibly
on N ×M . Lemma 2.23 implies that PQ0 is not L8-free which, by minimality of G, forces PQ0 = G.
This is a contradiction.
Next we look at the case where Q0 centralises P . Since Q is cyclic by (2), we then have that Q0 EG.
If PQ0/Q0 is centralised by Q/Q0, then [P,Q] = 1 (by coprime action), contrary to our hypothesis.
If Q/Q0 acts irreducibly (or by inducing power automorphisms) on PQ0/Q0, then Q acts irreducibly
(or by inducing power automorphisms) on P . Thus if G/Q0 is L8-free, then by Lemma 2.23 also G is.
But G is chosen to be a counter-example, so we deduce that G/Q0 is not L8-free. Now the minimality
of G forces Q0 = 1, which is false. Hence |Q| = q as stated.

Now we choose J1, J2 ≤ P to be distinct subgroups of order p such that J1, J2 are neither equal to
CP (Q) nor contained in [P,Q]. This implies that 〈J1, J2〉 ∩ [P,Q] 6= 1 because |P : [P,Q]| = p by (4).
These choices are possible because |P | ≥ p2 and, if p = 2, then [P,Q] ≥ 4 and hence |P | ≥ 8.
Set V := 〈J1, J2〉 and I := V ∩ [P,Q]. We choose x ∈ [P,Q] such that Qx 6= Q and prove that

L := {1, Q,Qx, I, J1, J2, Q[P,Q], V,G}

is isomorphic to M9.
Of course Q ∩Qx = 1 = J1 ∩ J2. Moreover Q and Qx are cyclic of order q by (5) and I is a p-group,
so it is also clear that Q ∩ I = 1 = Qx ∩ I. Next we see that J1 ∩ I = 1 = J2 ∩ I because I ≤ [P,Q]
and J1, J2 � [P,Q]. By (4) we observe that [P,Q] ≤ 〈Qx, Q〉 whence Q[P,Q] = 〈Qx, Q〉.
We also have that Q and Qx are maximal subgroups of Q[P,Q]. Since I 6= Q,Qx, it follows that
〈Q, I〉 = 〈Qx, I〉 = Q[P,Q]. As J1 and J2 are maximal subgroups of V and distinct from I, we further
have that

〈J1, J2〉 = V = 〈J1, I〉 = 〈J2, I〉.

The choice of I gives that Q[P,Q] ∩ V = I, so it remains to prove that

〈Q, J1〉 = 〈Q, J2〉 = 〈Qx, J1〉 = 〈Qx, J2〉 = G.

Let S ∈ {Q,Qx} and T ∈ {J1, J2}. Assume that 〈S, T 〉 6= G. Then 〈S, T 〉 is contained in a maximal
subgroup of G.
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Now, for any z ∈ [P,Q], we observe that Qz[P,Q] = Q[P,Q] is a maximal subgroup of G. Since [P,Q]
is the unique Sylow p-subgroup of Q[P,Q] and T � [P,Q], we deduce that T � Q[P,Q] and therefore
〈S, T 〉 cannot be contained in Q[P,Q].
Also QzCP (Q) is maximal in G for all z ∈ [P,Q], but T � QzCP (Q) because T � CP (Q). Hence
〈S, T 〉 � QzCP (Q). The next maximal subgroup we consider is P itself (see (5)), but of course 〈S, T 〉 �
P . The irreducible action of Q on [P,Q] (by (4)) implies that the groups that we just considered are
all maximal subgroups of G. None of them contains 〈S, T 〉, so 〈S, T 〉 = G.
This concludes the proof: G is M9-free, so we have reached our final contradiction. �

Lemma 3.2. Suppose that G is a {p, q}-group and that G is M9-free, but not L8-free. Then p = 3,
q = 2 and G is not nilpotent, moreover G has a normal Sylow 3-subgroup P and a section isomorphic
to D12. In particular G does not have cyclic Sylow 2-subgroups.

Proof. Assume that this is false and let G be a minimal counter-example. Our hypothesis implies
that G is L10-free, so by Theorem 2.18 we may suppose that G has a normal Sylow p-subgroup P .
Let Q ∈Sylq(G). If [Q,P ] = 1, then G is nilpotent and hence L8-free, contrary to our hypothesis.
Therefore [Q,P ] 6= 1. If P is not hamiltonian, then Lemma 3.1 gives the assertion of the lemma and
hence a contradiction.
Thus P is hamiltonian. Theorem 2.14 gives subgroups H,K ≤ P such that P = H ×K and such that
H is an elementary abelian 2-group and K ∼= Q8. In particular Φ(K) = Φ(P ) is central in G. Since G
is not nilpotent, this implies that Ḡ := G/Φ(P ) is not nilpotent.
As P̄ is elementary abelian, Lemma 3.1 is applicable to Ḡ. First suppose that Ḡ is L8-free. Then Lemma
2.23 yields that Q̄ is cyclic and acts irreducibly on P̄ . Hence Q is cyclic and, since Q normalises Ω(P ),
it follows that Ω(P ) = Φ(P ). In particular H = 1 and P ∼= Q8, and |Q : CQ(P )| = 3. Now Lemma
2.24 (i) tells us that G is L8-free, but by hypothesis it is not.
Therefore Ḡ is not L8-free. But then the minimal choice of G forces p = 3 and q = 2, which is
impossible.
So the first statement of the lemma is proved, and the fact that G involves D12 implies that G does
not have cyclic Sylow 2-subgroups. �

Hypothesis 3.3. Suppose that G is a non-nilpotent {2, 3}-group, that G has a normal Sylow 3-subgroup
P and that Q ∈ Syl2(G).

Lemma 3.4. Suppose that Hypothesis 3.3 holds and that G is M9-free. Then CP (Q) = 1.

Proof. Assume otherwise and choose G to be a minimal counter-example. Then CP (Q) 6= 1. Moreover
we let a ∈ Q be such that [P, a] 6= 1, but [P, a2] = 1. Then 〈a〉P is an M9-free subgroup of G and hence
the minimal choice of G implies that G = 〈a〉P . In particular Q = 〈a〉. As a2 centralises P , it follows
that 〈a2〉EG. The group G/〈a2〉 is also M9-free and has a normal Sylow 3-subgroup. Then the choice
of a and the minimality of G yield that a2 = 1.
We recall that P is a 3-group and therefore [P,Q] is not hamiltonian. Then Lemma 2.17 implies that
[P,Q] is elementary abelian and that P = CP (Q)× [P,Q].
We deduce that CP (a) ∩ [P,Q] = CP (Q) ∩ [P,Q] = 1 which means that a acts without fixed points
on [P,Q]. By choice a induces an automorphism of order 2 on P whence a inverts [P,Q]. In particular
[P,Q] = [P, a]. We choose a subgroup N of order 3 of [P,Q] and we also choose M ≤ CP (Q) such that
|M | = 3.
Then 〈a〉 normalises M , hence it acts on M × N . Let x ∈ M and y ∈ N be such that 〈x〉 = M and
〈y〉 = N . Then we see that U := 〈xy〉 and V := 〈yx−1〉 are also subgroups of M × N , and moreover
Ua = V and V a = U . We set

L := {1, U, V,N, 〈a〉, 〈ay〉, (M ×N), 〈a, y〉, (M ×N)〈a〉}
and we show that this lattice is isomorphic to M9.
First U ∩ V = U ∩N = N ∩ V and moreover 〈U, V 〉 = 〈N,V 〉 = 〈U,N〉 = M ×N.
With Lemma 2.7 we see that the subgroups N , 〈a〉 and 〈ay〉 intersect pair-wise trivially.
Instead of presenting all the remaining calculations, we just observe that neither U nor V is normalised
by a or by ay, and therefore 〈U, a〉 = 〈V, a〉 = 〈U, ay〉 = 〈V, ay〉 = (M ×N)〈a〉.
Thus L is isomorphic to M9, contrary to our hypothesis. �
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Corollary 3.5. Suppose that Hypothesis 3.3 holds and that G is M9-free. Then P is elementary
abelian.

Proof. By hypothesis P is a 3-group and hence non-hamiltonian. Then Corollary 2.16 implies that
[P,Q] is also non-hamiltonian. It follows with Lemma 2.17 that [P,Q] is elementary abelian and that
P = CP (Q)× [P,Q]. Now Lemma 3.4 gives the statement. �

Lemma 3.6. Suppose that Hypothesis 3.3 holds and that G is M9-free. If w ∈ Q induces an automor-
phism of order 2 on P , then w inverts P .

Proof. We know that P is elementary abelian by Corollary 3.5 and then the coprime action of w on
P gives that P = CP (w)× [P,w]. In particular w inverts [P,w]. Since P 〈w〉 satisfies the hypotheses of
Lemma 3.4, we obtain that CP (w) = 1 and hence w inverts P . �

Lemma 3.7. Suppose that Hypothesis 3.3 holds and that G is M9-free. If Q does not induce power
automorphisms on P , then |P | = 9.

Proof. Assume otherwise and choose G to be a minimal counter-example. Lemma 3.6 and our hypoth-
esis imply that some element w ∈ Q induces an automorphism on P that is not a power automorphism,
and in particular it has order at least 4. We may choose w such that w4 centralises P .
Now H := P 〈w〉 satisfies the hypotheses of the lemma and 〈w4〉EH. The group H/〈w4〉 also satisfies
our hypotheses and therefore the minimal choice of G forces G = P 〈w〉 and w4 = 1.
We also note that w2 inverts P by Lemma 3.6. Let a, b ∈ P, a 6∈ 〈b〉 be such that aw = b, bw = a−1 and
(a−1)

w
= b−1. Then let P0 := 〈a, b〉. Since G is a counter-example, we know that P 6= P0 and hence we

may choose c ∈ P\P0. As w2 inverts P , it follows that w does not normalise 〈c〉. Thus there is some
d ∈ P, d 6∈ 〈c〉 such that cw = d. We set

L = {1, 〈bd, c〉, 〈ac, d〉, P0, 〈wa〉, 〈w〉, P0〈c, d〉, P0〈w〉, P0〈c, d, w〉}
and we show that this lattice is isomorphic to M9.
By choice C〈w〉(a) = 1, so Lemma 2.7 gives that any two of the groups 〈bd, c〉, 〈ac, d〉, 〈a, b〉, 〈wa〉 and
〈w〉 intersect trivially.
Moreover 〈bd, c, ac, d〉 = 〈a, b, c, d〉 = 〈a, b, bd, c〉 = 〈a, b, ac, d〉.
We also note that b−1a = w−1a−1wa = w−1wa ∈ 〈w,wa〉 and hence

a−1 = a2 = b−1aab = b−1a(b−1a)w ∈ 〈w,wa〉.
Since w conjugates a to b, it also follows that b ∈ 〈w,wa〉.
Furthermore w = aa−1waa1− = awaa−1 ∈ 〈wa, a, b〉 and hence S := 〈w, a, b〉 = 〈wa, a, b〉 = 〈wa, w〉
and S∩〈a, b, c, d〉 = 〈a, b〉. We still need to show that one element from {〈wa〉, 〈w〉} and {〈bd, c〉, 〈ac, d〉},
respectively, generate P0〈c, d, w〉 = 〈a, b, c, d, w〉.
But this is immediate because wa and w interchange 〈a〉 and 〈b〉 and they also interchange 〈c〉 and
〈d〉. Thus L is isomorphic to M9 as stated, and this is a contradiction. �

Lemma 3.8. Suppose that Hypothesis 3.3 holds and that G is M9-free. Then every subgroup of Q
either acts irreducibly on P or it induces power automorphisms on P .

Proof. Assume that this is false and choose G to be a counter-example. We take w ∈ Q such that w
induces neither power automorphisms on P nor does it act irreducibly. We know from Corollary 3.5
and Lemma 3.7 that P is elementary abelian of order 9, so by Maschke’s Theorem we let P1, P2 ≤ P
be of order 3 that are w-invariant and such that P = P1 × P2. Applying Lemma 3.4 to P 〈w〉 yields
that CP (w) = 1 whence w inverts P . But this contradicts our assumption. �

Lemma 3.9. Suppose that Hypothesis 3.3 holds and that G is M9-free, but not L8-free. If Q ∼= Q8,
then Q induces power automorphisms on P .

Proof. If this is false, then Lemma 3.8 yields that Q acts irreducibly on P . Then Corollary 3.5 and
Lemma 3.7 imply that P is elementary abelian of order 9. By Lemma 3.6 all elements from Q that
induce an automorphism of order 2 on P invert P . Thus there must be some w ∈ Q inducing an
automorphism of order 4 on P . Then w2 inverts P and it follows that Q acts faithfully on P , so
Lemma 2.23 implies that QP is L8-free. However this contradicts our hypothesis. �
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The following corollary plays a role in the next section.

Corollary 3.10. Suppose that Hypothesis 3.3 holds and that G is M9-free, but not L8-free. If Q ∼= Q8,
then Q does not act faithfully on P .

Proof. We know from Lemma 3.9 thatQ induces power automorphisms on P , in particular it normalises
every subgroup of P of order 3. With P0 denoting such a subgroup of order 3, we see that CQ(P0) has
index 2 in Q and in particular the central involution in Q centralises P0. Hence it centralises P . �

Lemma 3.11. Suppose that Hypothesis 3.3 holds and that G is M9-free, but not L8-free. Then Q
induces power automorphisms on P .

Proof. Assume otherwise and let G be a minimal counter-example. Then G is M9-free and Corollaries
3.8 and 3.5 yield that Q acts irreducibly on P . Moreover P is elementary abelian. With Lemma 3.6
there exists some w ∈ Q that induces an automorphism of order 4 on P and such that w2 inverts P .
This means that we find a, b ∈ P such that a 6∈ 〈b〉 and such that aw = b, bw = a−1 and (a−1)

w
= b−1.

Lemma 3.7 implies that |P | = 9 and hence P = 〈a, b〉. Moreover Q is neither cyclic (by Lemma 3.2)
nor quaternion of order 8 (by Lemma 3.9) and therefore Q contains some involution v outside 〈w〉. We
note that v normalises every subgroup of Q by Lemma 2.12, in particular it normalises H0 := 〈w4〉 and
therefore H0 EH := P 〈v, w〉. Now 〈v, w〉/H0 ∈ Syl2(H/H0) and hence H/H0 has Sylow 2-subgroups
that are neither cyclic nor quaternion. Lemma 2.23 then yields that H/H0 is not L8-free. But it is
M9-free and 〈v, w〉/H0 does not induce power automorphisms on PH0/H0, so the minimality of G
forces H = G and H0 = 1.
This means that |Q| = 8. We recall that Q has three involutions, namely v, w2 and vw2, and that w2

inverts P . If [P, v] 6= 1, then v inverts P by Lemma 3.6 and hence vw2 centralises P . The same holds
the other way around, so we know that exactly one of the involutions in Q centralises P and the other
two invert P . Let t ∈ Q be an involution distinct from w2 that inverts P . We show that the lattice

L = {1, 〈wa〉, 〈w〉, 〈b〉, 〈tb〉, 〈tb
−1

〉, 〈w, a, b〉, 〈t, b〉, 〈w, t, a, b〉},
is isomorphic to M9.
Lemma 2.7 tells us that 〈w〉 ∩ 〈wa〉 = C〈w〉(a) = 1. It follows that

1 = 〈b〉 ∩ 〈tx〉 = 〈wy〉 ∩ 〈tx〉 = 〈b〉 ∩ 〈wy〉
where x ∈ {b, b−1}, y ∈ {a, 1G} are suitably chosen. Then we see that b−1a = w−1a−1wa = w−1wa ∈
〈w,wa〉 and hence a−1 = a2 = b−1aab = b−1a(b−1a)w ∈ 〈w,wa〉. We recall that w conjugates a to b,
consequently b ∈ 〈w,wa〉 and similarly 〈b, w〉 = 〈b, wa〉 = 〈a, b, w〉.
We calculate that b−1a−1 = btbtb = btb−1b−1tb = tb

−1

tb ∈ 〈tb, tb−1〉 and also

((ab)−1)((ab)−1)t
b

= ((ab)−1)b−1a = b ∈ 〈tb, tb−1〉. We deduce that 〈tb, tb−1〉 = 〈b, t〉 = 〈tb, b〉 = 〈tb−1

, b〉
and moreover 〈w, a, b〉 ∩ 〈t, b〉 = (〈w〉〈a, b〉) ∩ (〈t〉〈b〉) = 〈b〉.
It remains to show that one element from {〈w〉, 〈wa〉} and {〈tb〉, 〈tb−1〉}, respectively, generate 〈a, b, t, w〉.
If there is some c ∈ P such that 〈w, tb〉 ≤ Qc, then Lemma 2.7 forces t to centralise cb−1, contrary to
the fact that t inverts P .
Therefore 〈w, tb〉 ∩ P 6= 1 and 〈w, tb〉 ≥ 〈b〉. As w induces an automorphism of order 4 on P , it follows
that 〈w, tb〉 = 〈a, b, w, t〉. We argue similarly in the other cases and thus L is a lattice isomorphic to
M9. This contradicts our assumption. �

Lemma 3.12. Suppose that Hypothesis 3.3 holds and that |P | = 3. Suppose further that Q is a modular
group. Then G is M9-free.

Proof. Assume that this is false and let G be a minimal counter-example.
Suppose that the lattice L = {E,S, T,D,U, V,A,C, F} is isomorphic to M9 and is a sublattice of the
subgroup lattice of G. We note that this implies that F is not L8-free. First we show that F = G.
All subgroups of G have modular Sylow subgroups by hypothesis. Since F is not L8-free, Theorem
2.29 yields that F is not nilpotent. Hence F satisfies Hypothesis 3.3 and, by minimality, we deduce
that F = G.
If E∩P 6= 1, then E∩P = P . But G/P ' Q is a modular group, hence M9-free, and this is impossible.
This means that E ∩ P = 1.
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We also know that G is not nilpotent and hence it has more than one Sylow 2-subgroup. It follows
that G has three Sylow 2-subgroups.
We show that one of A and C is a 2-group and assume otherwise. Then P ≤ A∩C = D and therefore
the previous paragraph implies that S, T, U and V do not contain P . So they are all 2-groups. Since
there are only three distinct Sylow 2-subgroups in G, one of which is Q, we may suppose that S, T ≤ Q.
In particular A = 〈S, T 〉 ≤ Q is a 2-group, contrary to our assumption.
We may now suppose that A is a 2-group, without loss A ≤ Q. We recall that P � E and hence
P � U ∩ V . In particular we may suppose that U is a 2-group. Since 〈S,U〉 = G, we also see that

U � Q. We choose Q1 ≤ Q and w ∈ P# such that U = Qw1 . Next we argue that A ≤ 〈S,Q1〉. This
follows because G = 〈S,U〉 ≤ SQ1P implies that Q = SQ1. Moreover S ≤ A ≤ Q and therefore

A = 〈S,Q1〉 ∩A = 〈S,Q1 ∩A〉 = S(Q1 ∩A),

with Lemma 2.5.
Now we consider the group Y := CA∩Q1

(P ). Since [Y,w] = 1 and Y ≤ Q1, it follows that Y ≤ Qw1 = U .
Hence Y ≤ A ∩ U = E ≤ S. But then S ∩Q1 ∩A ≥ Y = CA∩Q1

(P ) and

|A| = |S| · |Q1 ∩A|
|Q1 ∩A ∩ S|

≤ |S| · |A ∩Q1|
|CA∩Q1

(P )|
.

Since Q normalises P , but does not centralise it, and since |P | = 3, we have that |Q : CQ(P )| = 2. In
particular |(A ∩ Q1) : (CA∩Q1

(P ))| = 2 and |A| = |S| · 2. Similarly |A : T | = 2 whence S and T are
normal in A. Therefore E = S ∩ T E A and A/E is a Klein fours group. We see that S, T and D are
precisely the three proper subgroups of A that contain E, but are distinct from it.
Since |G/CQ(P )| = 6, we have that E = A ∩ U ≤ Q ∩Qw = CQ(P ) and hence E ≤ CA(P ). Moreover
A ∩ Q1 � CA(P ) and therefore |A : CA(P )| = 2. Hence CA(P ) is one of the groups S, T or D. We
recall that A = S(A ∩Q1) = T (A ∩Q1). Since Y ≤ E and (hence) |E(A ∩Q1) : E| = 2, this implies
that E(A ∩ Q1) = D. It follows that CA(P ) is one of the subgroups S or T . If CA(P ) = S, then
S ≤ CQ(P ) ≤ Qw and 〈S,U〉 ≤ Qw 6= G, which is a contradiction. Hence CA(P ) = T , which is
impossible for the same reason. �

Lemma 3.13. Suppose that Hypothesis 3.3 holds, that P is elementary abelian and that Q is modular.
If Q induces power automorphisms on P , then G is M9-free.

Proof. We assume that this is false and choose a minimal counter-example G.
Let L := {E,S, T,D,U, V,A,C, F} denote a lattice that is isomorphic to M9 and is a sublattice of the
subgroup lattice of G. As G = PQ and P EG by hypothesis, we know that all subgroups X of G have
structure X = PXQ

a
X , where PX ≤ P , QX ≤ Q and a ∈ P are suitably chosen. We keep this notation.

Moreover we note that all subgroups of P are normal in G because Q induces power automorphisms
on P .
Now we collect a few general facts that follow from our choice of notation.

(i) If Q0 ≤ Q and a ∈ P are such that Qa0 ≤ Q, then Qa0 = Q0.

(ii) If X ≤ Y ≤ G, then PX ≤ PY and QX ≤ QY .

(iii) If X,Y ≤ G are such that G = 〈X,Y 〉, then Q = 〈QX , QY 〉.

Proof. Suppose that Q0 ≤ Q and a ∈ P are such that Qa0 ≤ Q. Then, since 〈a〉 E G, we see that
[Q0, a] ≤ Q ∩ 〈a〉 = 1. This proves (i). If X ≤ Y ≤ G, then the fact that P = O3(G) implies that
PX = X ∩ P ≤ Y ∩ P = PY .
For the next statement and also for (iii) we let a, b ∈ P be such that X = PXQ

a
X and Y = PYQ

b
Y .

If X ≤ Y , then we let c ∈ PY be such that QacX ≤ QbY . Then QX ≤ Q and Qacb
−1

X ≤ QY ≤ Q, so (i)

forces QX = Qacb
−1

X ≤ QY as stated. For (iii) we observe that

G = 〈X,Y 〉 = 〈PX , PY , QaX , QbY 〉 ≤ 〈P,QX , QY 〉

because a, b ∈ P . Since P is normal in G, it follows that G = P 〈QX , QY 〉 and in particular Q =
〈QX , QY 〉. �
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In the next few steps we restrict the structure of the members of L.

(1) F = G.
Proof. Lemma 2.4 and Theorem 2.9 yield that Q and P are M9-free, so |F | is divisible by 2 and by
3. We let Q0 ∈Syl2(F ) and P0 ∈ Syl3(F ) and we assume that Q0 centralises P0. Then F is nilpotent
and hence L8-free (Lemma 2.29), but this is a contradiction. Hence Q0 induces non-trivial power
automorphisms on P0 and P0 is an elementary abelian normal subgroup of Q0P0. As F is not M9-free,
the minimal choice of G forces G = F .

(2) E ∩ P = 1.
Proof. Assume otherwise and let N := E ∩ P . Then 1 6= N 6= P and N E G, so we see that G/N
inherits the hypotheses and is therefore M9-free. But this is false.

(3) There exist g, h ∈ G such that Eg ≤ Q, Eh ≤ Q, Q ∩ Cg = QCg and Q ∩Ah = QAh .
Proof. Let a ∈ P be such that C = PCQ

a
C . We know that E is a 2-group by (2) and E ≤ C, so we let

c ∈ PC be such that E ≤ (QC)ac. Let g := (ac)−1. Then Eg ≤ QC ≤ Q, moreover Cg = Ca
−1

= PCQC
and consequently QCg = Q ∩ Cg.
The statement for A follows in the same way.

(4) If X ∈ {S, T, U, V }, then |X : E| is even.
Proof. We assume otherwise, without loss X = S and |S : E| is odd. Then PS 6= 1 and S = EPS . As
PS EG, it follows from (1) that G = 〈S,U〉 = 〈E,PS , U〉 = PS〈E,U〉 = PSU . But now A = A ∩G =
A ∩ PSU = PS(A ∩ U) = PSE = S, which is a contradiction.

(5) Suppose that E ≤ Q, that Q ∩ C = QC and that c ∈ PC is such that S = PSQ
c
S or T = PTQ

c
T .

Then QC = QU = QV .
If E ≤ Q, Q ∩ A = QA and moreover if a ∈ PA is such that U = PUQ

a
U or V = PVQ

a
V , then

QA = QS = QT .
Proof. It is sufficient to prove the first statement in the case where S = PSQ

c
S . Then the assertion

with hypothesis for T follows in the same way and similar arguments imply the remaining statements.
Since C∩S = E and c ∈ C, it follows that (QS ∩C)c = QcS ∩C ≤ S∩C = E ≤ Q. Therefore (QS ∩C)c

as well as QS ∩ C are contained in Q and (i) forces QS ∩ C = (QS ∩ C)c ≤ E. Using (ii) and (iii) we
deduce that

QC = C ∩Q = C ∩ 〈QS , QU 〉 = 〈QS ∩ C,QU 〉 ≤ 〈E,QU 〉 = QU

and similarly QC = QV .

(6) At least one of S, T, U, V is a 2-group.
Proof. Assume otherwise. We set up some notation and write S = PSQ

s
S , T = PTQ

t
T , U = PUQ

u
U

and V = PVQ
v
V with suitable elements u, v, s, t ∈ P . Then the subgroups PS , PT , PU and PV are all

non-trivial and by (4) we also have that QS , QT , QU and QV are non-trivial. Assume that P ≤ A.
Then PU = P ∩ U ≤ A ∩ U ∩ P = E ∩ P = 1 by (2). This contradicts our assumption. So P � A.
Next assume that 〈PS , PU 〉 = P . As P is modular and PA∩PU = 1 by (2), we see that 〈PS , PU 〉∩PA =
PA = 〈PS , PU ∩ PA〉 = PS . Therefore PT = PT ∩ PA = PS ∩ PT and (2) yields that PT = 1, again
contrary to our assumption.
Now P ≤ 〈U, S〉 = 〈PS , PU , QsS , QuU 〉, hence P = 〈PS , PU , s−1u〉. This means that |P | = |PS ||PU | · 3
and similarly |P | = |PT ||PU | ·3 = |PS ||PV | ·3| = |PT ||PV | ·3. Without loss we suppose that |PT | ≥ |PU |.
Then either |P | = |PT ||PS | · 3 or |P | = |PT ||PS |. The second case yields that P = 〈PS , PT 〉 = PA,
which we already showed to be false. Therefore |P | = |PT ||PS | · 3.
Then |PS | = |PT | = |PU | = |PV |. Moreover, since PA 6= P , we also have that PA = 〈PS , PT 〉 and so
|PA| · 3 = |P |. A similar argument holds for PC . Therefore PA and PC are maximal subgroups of P ,
which means that |PD| · 9 = |P |.
If |PS ||PD| · 3 = |PA| = |P |

3 , then |PS | = 1, contradicting our assumption. Thus |PS ||PD| = |PA| = |P |
3

which yields that |PS | = |PD| = |PT | = |PU | = |PV | = 3. We conclude that |P | = 27 and |PA| =
|PC | = 9.

So we let P = 〈a, b, c〉 and we choose notation such that PC = 〈b, c〉 and PS = 〈a〉. We let x ∈ P be
such that S = 〈a〉QxS . Then, since a ∈ S, we may choose x ∈ 〈b, c〉 = PC . In particular |PC | = 9.
In light of (3) we suppose that E ≤ Q and Q ∩ C = QC . Then (5) yields that QC = QU = QV .
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If C is nilpotent, then U and V are also nilpotent and then the fact that E ≤ QC = QU = QV
immediately gives that E ∈Syl2(C). So we suppose that C is not nilpotent. In particular [QC , PC ] 6= 1
and therefore Q0 := CQC

(PC) < QC . Then Q0 E C and the factor group C/Q0 has order 18 and a
modular subgroup lattice (see for example Theorem 2.2.3 in [4]). Since QC = QU , we know that U
contains a C-conjugate of QC , so in particular Q0 ≤ U . Similarly Q0 ≤ V and the subgroups U/Q0

and V/Q0 of C/Q0 have order 6. So they do not intersect trivially. If they intersect in a group of
order 3, then 3 divides |U ∩ V | = |E|, contrary to (2). Therefore |U/Q0 ∩ V/Q0| = 2, and in particular
U ∩ V ∈Syl2(C). But U ∩ V = E and now this contradicts (4).

Suppose that S is a 2-group. Conjugating L in G if necessary (see (3)), we may suppose that E ≤ Q
and Q ∩ C = QC .
Let s, u, v ∈ P be such that S = QsS , U = PUQ

u
U and V = PVQ

v
V . Then (1) implies that

G = 〈S,U〉 = PU 〈QsS , QuU 〉 ≤ PU 〈s−1u〉Qs.
Therefore P = PU 〈s−1u〉 whence |P | ≤ |PU | · 3. The same argument with V instead of U shows that
also |P | ≤ |PV | · 3.
We know from Lemma 3.12 and from (2) that PU and PV are distinct from 1 and from each other,
so PU and PV are maximal subgroups of P . It follows that P = PUPV ≤ 〈U, V 〉 = C, so in particular
PC = P and s ∈ PC . Thus (5) is applicable and we have that QC = QU = QV . We recall that E is a
2-group, therefore PU ∩ PV = 1 and it follows that |P | = 9. In particular the arguments from the last
paragraph of the proof of (6) apply and they yield that E = U ∩ V ∈ Syl2(C), contrary to (4).

With similar arguments we exclude the case where T is a 2-group.
Then (6) yields that one of U or V is a 2-group.
Now we argue in the same way as in the previous paragraph. We let u ∈ P be such that U = QuU and
show first that P = PSPT ≤ 〈S, T 〉 = A, so that u ∈ PA. Then we use (3) to see that we may without
loss suppose that E ≤ Q and Q ∩ A = QA, and then (5) is applicable to A, S and T . It follows that
QA = QS = QT and that E = S ∩ T ∈ Syl2(A), which is impossible by (4).
This is our final contradiction. �

Definition 3.14. We say that G is a {2, 3}∗-group if and only if the following holds:

(i) G is a non-nilpotent {2, 3}-group;
(ii) P ∈ Syl3(G) is normal in G and elementary abelian;
(iii) Q is a modular Sylow 2-subgroup of G;
(iv) Q induces power automorphisms on P ; and
(v) G has a section isomorphic to D12.

Theorem 3.15. Suppose that G is a {p, q}-group. Then G is M9-free, but not L8-free if and only if
G is a {2, 3}∗-group.

Proof. First suppose that G is a {2, 3}∗-group. Then in particular Hypothesis 3.3 holds. Now Q induces
power automorphisms on P and P is elementary abelian. Thus Lemma 3.13 is applicable and it yields
that G is M9-free. Moreover G involves D12 and hence it is not L8-free (see Example 2.8).
Now we suppose, conversely, that G is an M9-free {p, q}-group, but not L8-free. Then G is not nilpotent
and Theorem 2.18 implies that G has a normal p-subgroup P and a q-subgroup Q such that G = PQ
and such that Q acts non-trivially on P . With Lemma 3.2 it follows that p = 3 and q = 2 and that G
involves D12. Moreover P is elementary abelian by Corollary 3.5. Now Lemmas 3.11 and 3.8 give the
result. �

Corollary 3.16. Suppose that G is a {p, q}-group and that G is M9-free, but not L8-free.
Let P ∈ Sylp(G) and Q ∈ Sylq(G). If Q is not normal in G, then G = 〈Qx | x ∈ P 〉.

Proof. By Theorem 3.15, G is a {2, 3}∗-group. This means that Q induces power automorphisms on
P and that Q is a 2-group and P is an elementary abelian 3-group. Let x ∈ P . Lemma 3.4 gives that
CP (Q) = 1, hence there exists some a ∈ Q such that [x−1, a] 6= 1. But a normalises 〈x〉, so we must
have that (x−1)a = x. In particular a−1ax ∈ 〈Q,Qx〉. But we also see that a−1ax = a−1x−1ax =
(x−1)ax = x2 = x−1 and hence x ∈ 〈Q,Qx〉 ≤ 〈Qy|y ∈ P 〉. We chose x ∈ P arbitrarily, so it follows
that P ≤ 〈Qx|x ∈ P 〉. Thus G = 〈Qx|x ∈ P 〉 as stated. �
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Now we combine Corollaries 3.16 and 2.26:

Corollary 3.17. Suppose that G is an M9-free {p, q}-group, let P ∈ Sylp(G) and let Q ∈ Sylq(G). If
Q is not normal in G, then G = 〈Qx | x ∈ P 〉.

4. M9-free groups

Based on our results about M9-free {p, q}-groups we will now classify all finite M9-free groups. The
last class of groups for us to study before we proceed is the class of what we call “Q∗8-groups”.

Definition 4.1. We say that G is a Q∗8-group if and only if G has subgroups Q, N and M satisfying
the following:

(i) G = (N ×M)Q;
(ii) Q ∼= Q8;
(iii) N is an elementary abelian normal 3-subgroup of G;
(iv) M is an elementary abelian normal r-subgroup of G for some odd prime r distinct from 3;

and
(v) MQ is L8-free and not nilpotent, and NQ is M9-free, but not L8-free.

Theorem 4.2. If G is a Q∗8-group, then G is M9-free.

Proof. We assume that this is false and we choose all the notation for G as in Definition 4.1. More-
over we choose G to be minimal with the property that its subgroup lattice contains a lattice L =
{E,S, T,D,U, V,A,C, F} isomorphic to M9, again with our standard notation. Let x, y ∈ Q be such
that they generate distinct subgroups of order 4 of Q and let z denote the central involution in Q.
First we look at MQ. By definition of a Q∗8-group, this subgroup is L8-free and not nilpotent, so
Theorem 2.29 implies that Q acts faithfully on M and that |M | = r2, where r ≡ 3 modulo 4. Moreover
NQ is M9-free, but not L8-free, so it follows from Lemmas 3.9 and 3.10 that Q acts non-faithfully on
N and by inducing power automorphisms. We also recall that N and M have coprime order.

(1) z inverts M .
Proof. This follows from the fact that Q acts faithfully on M and that, therefore, z acts as the central
involution of GL2(r).

(2) The subgroups of order 4 of Q act irreducibly on M .
Proof. Assume that, without loss, the subgroup X := 〈x〉 does not act irreducibly on M . Then let M1

denote an X-invariant subgroup of M of order r. As r − 1 ≡ 2 modulo 4, it follows that z centralises

some element in M#
1 , contrary to (1).

(3) Two of the elements x, y, xy ∈ Q invert N . In particular [N, z] = 1.
Proof. We recall that NQ is not nilpotent. Hence we may without loss suppose that [N, x] 6= 1. As Q
induces power automorphisms on N , it normalises all subgroups of N of order 3, so there exists some
element g ∈ N of order 3 that is inverted by x. But x induces a universal power automorphism and
hence it inverts N . If y centralises N , then xy inverts it and vice versa.

For the remainder of the proof we choose notation such that x and y invert N .

(4) Suppose that g ∈ N ×M .
If g ∈ N#, then Q ∩Qg = 〈xy〉. If g ∈ (N ×M)\N , then Q ∩Qg = 1.
Proof. As NM EG and Q∩NM = 1, we may apply Lemma 2.7 and we obtain that Q∩Qg = CQ(g).
If g ∈ N#, then CQ(g) = 〈xy〉 by (3). If g ∈ (N×M)\N , then (1) and (3) yield that g is not centralised
by z, hence it is not centralised by any of x, y or xy or their inverses, as claimed.

(5) Suppose that M1 ≤M and that g ∈ NM1. Then zg ∈ 〈z〉M1. If h ∈ (M ×N)\N , then zh 6∈ 〈z〉N .
Proof. Let a ∈ N , b ∈M1 be such that g = ab. Then zg = zab = (za)b = zb ∈ 〈z〉M1 by (3).
Next let h ∈ (M × N)\N and assume that zh ∈ 〈z〉N . Then we let c ∈ N , d ∈ M# be such that
h = cd. Then zzh = z(cd)−1zcd = c−1zd−1zdc = c−1(d−1)zdc = c−1d2c = d2 ∈ M , using (1) and (3).
We deduce that zh ∈ 〈z〉M ∩ 〈z〉N = 〈z〉, which contradicts (4).

(6) F = G.
Proof. Let Q1 denote a maximal subgroup of Q. Then Q1 is cyclic of order 4 and contains z, so we
know by (3) that Q1 does not act faithfully on N . But Q1 acts faithfully on M (by (1)) and therefore
CQ1(M) 6= CQ1(N). Moreover Q1 acts irreducibly on M and by inducing power automorphisms on
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N . Hence (N ×M)Q1 is a Λ∗-group as introduced in Definition 2.27, which means that this group is
M9-free (Theorem 2.29). As G is not M9-free by assumption, we may suppose that F contains Q. But
we also know that NQ and MQ are M9-free, which implies that F contains non-trivial subgroups of N
and of M , respectively. Now (2) implies that M ≤ F . Let N1 := N ∩F . Then F = (N1×M)Q and we
look at the subgroup N1Q. By Theorem 3.15, Q induces non-trivial power automorphisms in N and
hence in N1, therefore Theorem 2.29 yields that N1Q is not L8-free. It follows that F is a Q∗8-group
that is not M9-free, so the minimal choice of G forces F = G.

(7) E ∩N=1 and M � E.
Proof. Set W := E ∩N and assume that W 6= 1. We note that W ≤ N , so M centralises W and Q
normalises W because it induces power automorphisms on N . This means that W EG. We also note
that W is contained in all members of L because W ≤ E. Let Ḡ := G/W . Then Ḡ is not M9-free, in
particular it is not isomorphic to a subgroup of QM and this forces W 6= N . Theorems 3.15 and 2.29
yield that Ḡ is a Q∗8-group, and this contradicts the minimal choice of G as a counter-example. Hence
E ∩N = W = 1.
Next we assume that M ≤ E. As M E G, we may look at the factor group G/M . This group is
isomorphic to QN , but it is also not M9-free, and this is impossible.

(8) The subgroups S, T, U, V (from the lattice L) are not contained in NM .
Proof. Assume otherwise. The arguments are similar for S, T, U and V , so we assume that S ≤ NM .
Using (6) we see that G = F = 〈S,U〉 = 〈S, V 〉, so it follows that U and V both contain a conjugate
of Q. Without loss Q ≤ U and let g ∈ G be such that Qg ≤ V . We may choose g in NM .
Assume that there exists a ∈ N such that Qg = Qa. Then (4) implies that xy ∈ Q ∩ Qa ≤ U ∩ V =
E ≤ S ≤ NM , which is false. Therefore g ∈ NM\N . As NM EG, it follows that 〈Q,Qg〉 contains a
non-trivial element of M . Thus C contains Q and some element of M#, which by (2) means that

M ≤ C.
Now S ∩M ≤ S ∩ C = E = U ∩ V . If S ∩M 6= 1, then 1 6= S ∩M ≤ U and 1 6= S ∩M ≤ V . The
irreducible action of Q ≤ U on M (and of Qg ≤ V on M) forces M ≤ U ∩ V = E. This contradicts
(7).
Hence S∩M = 1 and it follows that S = (S∩N)× (S∩M) ≤ N . In particular SEG whence G = SU .
Now Dedekind’s identity gives that A = S(A ∩ U) = S, which is false.
This final contradiction shows that S � NM .

(9) The subgroups S, T, U and V are not contained in NM〈z〉.
Proof. Assume otherwise and without loss assume that S ≤ NM〈z〉. Then we know from (8) that S
has even order, so there exists some g ∈ NM such that zg ∈ S. We may choose g ∈ M by (3). As
G = F = 〈S,U〉 = 〈S, V 〉 by (6), it follows as in the previous step that U and V contain a conjugate
of Q. Without loss Q ≤ U and we let h ∈ G be such that Qh ≤ V . Then we may take h ∈ NM and
(4) yields that h /∈ N . In particular C = 〈U, V 〉 contains a non-trivial subgroup of M and then all of
M , by (2).
We know that M � E = U ∩ V by (7), hence (2) implies that M intersects U or V trivially. Without
loss suppose that U ∩M = 1. Then U is an r′-subgroup of G that contains Q, so U ≤ NQ. We note
that, by (3), this implies that z is the unique involution in U . We also recall that zg ∈ S and that
〈z,M〉 ≤ C, so zg ∈ S ∩ C = E ≤ U . But then zg = z, so z ∈ S. We deduce that z is the unique
involution in S. Hence S ∩M = 1 by (1) and moreover S ≤ N〈z〉. Finally G = F = 〈S,U〉 ≤ NQ,
which is false.

(10) D ∩M = 1.
Proof. We assume that this is false and we let M1 := D ∩M . It follows from (9) that A and C have
order divisible by 4, so they contain a cyclic subgroup of order 4 that is conjugate to a subgroup of Q,
respectively. As M1 6= 1, (2) implies that M ≤ A ∩ C = D and hence M1 = M . Let N1 := A ∩N and
N2 := C ∩N . We may suppose that Q ∩ A ∈ Syl2(A) and hence A ≤ QN1M . Let h ∈ G be such that
C ≤ QhN2M . Then we may suppose that h ∈ N . As A and C contain a conjugate of z, it follows that
z ∈ A ∩ C and therefore z ∈ D.
If M ∩ S 6= 1, then (9) implies that M ≤ S and hence M ≤ S ∩D = E. This is impossible by (7) and
thus M ∩S = 1. Similarly M ∩T = 1. Therefore we may suppose that T ≤ NQ and that there is some
a ∈ NM such that S ≤ NQa. If a ∈ N , then A = 〈S, T 〉 ≤ NQ, and this contradicts the fact that
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M ≤ A. Therefore a ∈ (NM) \N . Since T and S have order divisible by 4, we deduce that z ∈ T and
za ∈ S. By (5) we also have that za ∈M〈z〉 ≤ D, so za ∈ S ∩D = E ≤ T , which is a contradiction.

We can now finish the proof. As A ∩ C ∩M = 1 by (10), we deduce from (9) and (2) that at most
one of A and C intersects M non-trivially. We suppose that A ∩M = 1 and hence, without loss, that
A ≤ QN . Step (9) also yields that T and S contain conjugates of z, so it follows that z ∈ S ∩ T = E.
Thus z ∈ U ∩ V . As M ≤ 〈S,U〉 = 〈S, V 〉 = F = G (by (6)), we also see that U and V contain
non-trivial subgroups of M or a conjugate zy of z such that y ∈ (M × N) \ N . Moreover U and V
contain elements of order 4 from G, by (9). Hence they contain M by (2). Now M ≤ U ∩ V = E,
contrary to (7). Thus G is M9-free. �

Corollary 4.3. Suppose that G is a Q∗8-group with notation as in Definition 4.1.
Then G = 〈Qx | x ∈ N ×M〉.

Proof. The subgroups QN and QM of G are M9-free and their orders have only two different prime
divisors, respectively. Therefore Corollary 3.17 yields that QM = 〈Qx | x ∈M〉 and that
QN = 〈Qx | x ∈ N〉. Hence G = 〈QN,QM〉 = 〈Qx | x ∈ N ×M〉. �

Lemma 4.4. M9 is subdirectly irreducible.

Proof. We choose our usual notation M9 = {E,S, T,D,U, V,A,C, F}. Suppose that L is a lattice and
that φ is a lattice homomorphism from M9 to L that is not injective. We show that Eφ = Dφ.
Assume otherwise and first assume that there is some element X ∈ M9 such that Xφ = Dφ. Then
X 6= E by assumption.
If X ∈ {T, S, U, V }, then Eφ = (D ∩X)φ = Dφ ∩Xφ = Dφ because φ is a lattice homomorphism. But
this is false.
If X = A, then Dφ = Aφ = (D ∪ T )φ = Dφ ∪ Tφ and therefore Tφ ≤ Dφ. But this implies that
Tφ = Tφ ∩Dφ = (T ∩D)φ = Eφ and consequently Fφ = (U ∪ T )φ = Uφ ∪ Tφ = Uφ ∪Eφ = Uφ. Then
we conclude that Aφ ≤ Fφ = Uφ and hence Aφ = Aφ ∩ Uφ = (A ∩ U)φ = Eφ, so Dφ = Eφ. This is a
contradiction. We argue similarly if X = C, so this is impossible as well.
If X = F , then Uφ ≤ Fφ = Dφ and moreover Uφ ∩ Dφ = Eφ. Therefore Uφ = Eφ. With the same
argument Tφ = Eφ. It follows that Eφ = Uφ ∪ Tφ = (U ∪ T )φ = Fφ = Dφ and this is another
contradiction.
We deduce that D is the unique pre-image in M9 of Dφ. But we chose φ to be non-injective, and
therefore there must be an image with two distinct pre-images. We choose X1, X2 ∈M9 to be distinct

from D and from each other and such that Xφ
1 = Xφ

2 .
Assume that X1 ∈ {S, T, U, V }. Then we choose some Y ∈ {S, T, U, V } such that X1 ∪ Y = F . We
now argue by excluding all possibilities for X2.

Assume that X2 = E. Then Fφ = (X1 ∪ Y )φ = Xφ
2 ∪ Y φ = Eφ ∪ Y φ = (E ∪ Y )φ = Y φ and therefore

Dφ ∪ Y φ ≤ Fφ = Y φ also Dφ ≤ Y φ. This implies that Dφ = Dφ ∩ Y φ = (D ∩ Y )φ = Eφ, contrary to
the fact that Dφ has a unique pre-image. This means that X2 6= E.
Next assume that X2 6= E, but X1 ∩ X2 = E. Then let H := X2 ∪ X1. Then Hφ = (X1 ∪ X2)φ =

Xφ
1 ∪ X

φ
2 = Xφ

1 = Xφ
1 ∩ X

φ
2 = (X1 ∩ X2)φ = Eφ. It follows that Eφ ≤ Dφ ≤ Hφ = Eφ and thus

Dφ = Eφ. Again we have a contradiction.

Now we assume that X1 ≤ X2. Then X2 ∈ {A,C, F} whence D ≤ X2. Therefore Dφ ≤ Xφ
2 = Xφ

1 and

this means that (D∩X1)φ = Dφ∩Xφ
1 = Dφ. In particular D∩X1 = D whence X1 ∈ {A,C}, contrary

to our assumption.

So we have that X1 /∈ {S, T, U, V } and, by symmetry, that X2 /∈ {S, T, U, V }. These arguments also
show that Sφ, Tφ, Uφ and V φ have unique pre-images in M9. We recall that X1 6= D 6= X2 by choice,
so the only possibilities are X1, X2 ∈ {E,A,C, F}.
Again we assume that X1 ≤ X2. Then X2 ∈ {A,C, F} and it follows as above that D ∩ X1 = D.

Thus X1 ∈ {A,C} and X2 = F . Let Y ∈ {T,U} be such that X1 ∪ Y = F . Then Xφ
1 = Xφ

2 =

Fφ = (X1 ∪ Y )φ = Xφ
1 ∪ Y φ, which means that Y φ ≤ Xφ

1 and Y φ = Eφ. This contradicts the
fact that Y φ has a unique pre-image in M9, by the previous paragraph. Therefore X1 � X2 and, by
symmetry, also X2 � X1. In particular X1 and X2 are both distinct from E and F , which means that
{X1, X2} = {C,A}.
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Now Fφ = Xφ
1 ∪X

φ
2 = Xφ

1 = Xφ
1 ∩X

φ
2 = Dφ, which is impossible. �

It follows from this that, if G is a direct product of two subgroups of coprime order, then G is M9-free
if and only if these subgroups are M9-free.

Theorem 4.5. Suppose that n ∈ N and that G1, ..., Gn are subgroups of G of pairwise coprime orders
and such that G = G1× ...×Gn. For all i ∈ {1, ..., n} suppose further that Gi is L8-free or a Q∗8-group
or a {2, 3}∗-group. Then G is M9-free.

Proof. This follows from Theorems 3.15 and 4.2 and the fact that M9 is subdirectly irreducible. �

Theorem 4.6. Suppose that G is M9-free and let p, q ∈ π(G). Then for all P ∈ Sylp(G) and all
Q ∈ Sylq(G) we have that PQ = QP .

Proof. Assume that this is false and let G be a minimal counter-example. We choose P ∈ Sylp(G) and
Q ∈Sylq(G) such that PQ 6= QP and we fix this notation.
As G is M9-free and hence L10-free, Theorem 2.20 yields that G is soluble. Hence if we let N be a
minimal normal subgroup of G, then there exists a prime r such that N is an elementary abelian r-
subgroup. The minimal choice of G implies that any two Sylow subgroups of G/N (for distinct primes)
commute. Therefore PNQ/N = QNP/N . Moreover G = 〈P,Q〉, again by minimal choice of G, and
hence G = QNP = PNQ.
Next we notice that some conjugate Q1 of Q commutes with P , because G soluble. Then also G =
Q1PN . In particular Q1P is an M9-free subgroup of G in which Q1 or P is normal, by Theorem 2.18.
Without loss we suppose that Q1 ≤ NG(P ) (which means that PN EG) and we keep all this notation.

(1) p 6= r 6= q. In particular Op(G) = 1 = Oq(G), and Q and P act faithfully on N .
Proof. If r = p, then N ≤ P and hence PQ = QP , but this is not the case. Similarly r 6= q. This also
implies that G has no non-trivial normal p- or q-subgroup.
We recall that Q1 normalises P and hence it normalises CP (N). Thus CP (N) ≤ Op(G) = 1. In
particular CQ1P (N) has trivial Sylow p-subgroups and this implies that CQ1P (N) is a q-group. Being
normal in G, this subgroup is now contained in Oq(G) and hence trivial. As Q1 is conjugate to Q in
G, we deduce that P and Q act faithfully on N .

(2) Q and P act irreducibly on N or by inducing power automorphisms. In the power automorphism
case every element of Q# (or P#) acts without fixed points on N .
Proof. We look at QN . This is an M9-free {q, r}-subgroup of G and hence Theorem 3.15 implies
that QN is L8-free or a {2, 3}∗-group. In the second case Q induces power automorphisms as stated.
Now we consider the L8-free case. As QN is not nilpotent by (1), we deduce from Theorem 2.25 that
Q ∼= Q8. (Recall that N is elementary abelian.) Moreover N has order r2 and Q acts faithfully on it,
so Q is isomorphic to a subgroup of GL2(r). In particular the central involution z in Q inverts N .
Assume that Q normalises a subgroup N1 of N of order r. As r − 1 ≡ 2 modulo 4, it follows that z

fixes some element of N#
1 rather than inverting it. So this is impossible and we conclude that Q acts

irreducibly on N .
Now suppose that Q acts by inducing power automorphisms on N . Then these are universal and (1)
implies that Q acts without fixed points on N . The same arguments for the group PN prove the
assertion for P .

(3) If x ∈ N#, then Q ∩Qx = 1 and P x ∩ P = 1.
Proof. We apply Lemma 2.7 to N . If x ∈ N#, then the lemma yields that Q ∩Qx = CQ(x). But (2)
forces CQ(x) = 1. Similarly P ∩ P x = CP (x) = 1, so the proof is finished.

(4) Suppose that a, b ∈ N are such that Qa and Qb normalise P . Then a = b. If x, y ∈ N are such
that Q normalises P x and P y, then x = y.

Proof. Let c := ba−1 and P1 := P a
−1

. Then by hypothesis 〈Q,Qc〉 ≤ NG(P1). Assume that c 6= 1 and
let u ∈ Q#. Then v := u−1 · uc = (c−1)u · c ∈ NG(P1)∩N . If v = 1, then 1 6= u = uc ∈ Q∩Qc and (3)
forces c = 1, which is a contradiction. Therefore v 6= 1.
We have that [P1, v] ≤ P1 ∩N = 1. In particular P1 does not act irreducibly on N , so by (2) it induces
power automorphisms. Then P also induces power automorphisms on N and every element of P#

acts without fixed points on N . Then the same holds for P1, and hence [P1, v] = 1 forces v = 1. So c
centralises u, i.e. u ∈ Q ∩Qc. Then (3) forces c = 1, which is a contradiction.
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Next let x, y ∈ N be such that Q normalises P x and P y. Then Q and Qy
−1x normalise P x and so the

first part of the proof gives that x = y.

(5) There is some y ∈ N# such that G = 〈Q,P 〉 = 〈Qy, P y〉 = 〈Qy, P 〉 = 〈Q,P y〉.
Proof. The coprime action of Q on PN yields (see for example 8.2.3 in [3]) that there exists some
x ∈ N such that Q ≤ NG(P x). Moreover Q does not normalise P by assumption, so x 6= 1. Since
[P,N ] 6= 1 6= [Q,N ], we have that |N | > 3 and hence there is y ∈ N# such that x 6= y 6= x−1. Then Q
does not normalise P y and Qy normalises only P xy. The choice of y and x implies that P 6= P xy 6= P y.
Hence we see that G = 〈Q,P 〉 = 〈Qy, P y〉 = 〈Qy, P 〉 = 〈Q,P y〉.
Let y ∈ N# be as in (5) and let Y := 〈y〉. We know that P and Q act irreducibly or by inducing power
automorphisms on N , by (2). This gives three cases to look at, two of which we can treat together.
We proceed by constructing a lattice isomorphic to M9 in L(G), giving a contradiction. For these
constructions we note that (5) and the choice of y imply that one of P, P y and one of Q,Qy generate
G.

First assume that both groups induce power automorphisms. Then they normalise the group Y ≤ N
and hence Y EG. But we chose N to be a minimal normal subgroup of G, so N = Y and hence P and
Q also act irreducibly on N .
We look at L := {1, P, P y, N,Q,Qy, PN,QN,G}.
By (3) any two of the groups N,P, P y, Q and Qy intersect trivially. Moreover PN ∩ NQ = N and
G = 〈PN,QN〉. Then (3) and the irreducible action imply that 〈Q,Qy〉 = QN and 〈P, P y〉 = PN .
Thus L is isomorphic to M9, which is a contradiction.
Finally, without loss, Q acts irreducibly on N and P acts by inducing power automorphisms. Then we
set L := {1, P, P y, Y,Q,Qy, PY,QN,G}.
Again by (3) any two of the groups Y, P, P y, Q and Qy intersect trivially. Moreover PY ∩ NQ = Y
and G = 〈PY,QN〉. We also see that 〈Q,Qy〉 = QN and 〈P, P y〉 = PY . Once more we conclude that
L is isomorphic to M9, which is impossible. �

Theorem 4.7. Suppose that G is M9-free. Then there are n ∈ N and subgroups G1, ..., Gn of G of
pairwise coprime orders such that the following hold:

(i) G = G1 × ...×Gn and
(ii) for all k ∈ {1, ..., n} the group Gk is L8-free or a Q∗8-group or a {2, 3}∗-group.

Proof. Assume that this is false and choose G to be a minimal counter-example. Then G is not nilpotent
because otherwise Lemma 2.10 yields that G is a direct product of L8-free groups of pairwise coprime
orders. In particular |G| has at least two distinct prime divisors.
We also know that G is soluble by Theorem 2.20.

(1) Suppose that p, q ∈ π(G) and let Q ∈ Sylq(G) and P ∈ Sylp(G). Moreover let x, y ∈ G. Then P xQy

is a subgroup of G that is conjugate to PQ in G.

Proof. Theorem 4.6 yields that PQ and P xQy are subgroups of G. In fact they are Hall {p, q}-
subgroups of G. As G is soluble, it follows that these subgroups are conjugate in G. (See for example
6.4.7 in [3].)

(2) Suppose that p, q ∈ π(G) and let Q ∈Sylq(G) and P ∈Sylp(G). If Q is not normal in G, then Q
normalises P .
Proof. Assume that Q 6≤ NG(P ). We know from Theorem 4.6 that PQ = QP and by hypothesis PQ
is M9-free. Thus Theorem 2.18 forces Q E PQ. With Corollary 3.17 we see that PQ = 〈P x | x ∈ Q〉.
Let g ∈ G and x ∈ Q. Then it follows from (1) that P xQg is conjugate to PQ in G. In particular
Qg E P xQg and therefore Q ≤ 〈P x | x ∈ Q〉 ≤ NG(Qg). As Q,Qg ∈ Sylq(G), this is only possible if
Q = Qg. But this implies that QEG, contrary to our hypothesis.

Now we set up some notation for the remainder of the proof.
We already argued that G is not nilpotent, so we fix a prime q ∈ π(G) and Q ∈ Sylq(G) such that Q is
not normal in G. The solubility of G yields that we find a Hall q′-subgroup X of G. As X is M9-free
and G is a minimal counter-example to our theorem, there exist n ∈ N and subgroups Y,X1, ..., Xn of
X of pairwise coprime order such that X = Y ×X1 × · · · ×Xn and such that Y is L8-free and each
of the groups X1, ..., Xn is a {2, 3}∗-group or a Q∗8-group. Now, according to Theorem 2.29, let k ∈ N
and Y1, ..., Yk be subgroups of Y of pairwise coprime order such that Y = Y1 × · · · × Yk and such that

18



each of these subgroups is a p-group or a {2, p}-group satisfying Lemma 2.23 (iv) (b) (for a suitable
prime p) or a Λ∗-group.
Using (2) we see that every Sylow subgroup of X is normalised by Q and hence Q ≤ NG(X). So XEG,
but we also know for all i ∈ {1, ..., n} and j ∈ {1, ..., k} that Xi EG and Yj EG. In particular all XiQ
and all YjQ are subgroups of G.

(3) For all i ∈ {1, ..., n} and j ∈ {1, ..., k} we have that [Xi, Q] 6= 1 and [Yj , Q] 6= 1.
Proof. Assume otherwise and without loss assume that Q centralises X1. Let W := X2 × · · ·Xn.
As Q, Y and X1 normalise W , it follows that QW is a normal subgroup of G. The minimal choice
of G forces QW to be a direct product of subgroups of pairwise coprime orders that are L8-free or
{2, 3}∗-groups or Q∗8-groups, respectively. But X1 E G and the orders of QW and X1 are coprime,
therefore G = Y × X1 × QW . Moreover Y is L8-free and X1 is a {2, 3}∗-group or a Q∗8-group. This
contradicts our choice of G as a counter-example.
We argue in a similar way if Q centralises Y1: Then Q and X normalise W0 := Y2 × · · ·Yk, so QW0 E
G and G = Y1 × QW0 × X1 × · · · × Xn. By minimality QW0 is a direct product of subgroups of
pairwise coprime orders that are L8-free or {2, 3}∗-groups or Q∗8-groups, respectively. Again this is a
contradiction.

(4) If j ∈ {1, ..., k}, then there exists a prime number pj such that Yj is a Sylow pj-subgroup of G.
Moreover n = 0 and all subgroups Yj are modular.
Proof. Assume that n 6= 0 and let i ∈ {1, ..., n}. We recall that Xi is a {2, 3}∗-group or a Q∗8-group.
In both cases (following from the definition) there exist m ∈ N, pairwise distinct prime numbers
s, r1, ..., rm, an s-subgroup S, an r1-subgroup R1,..., and an rm-subgroup Rm of Xi such that Xi =
S(R1 × ... × Rm) and S is not normal in Xi. Let R := R1 × ... × Rm. Then Corollaries 4.3 or 2.28
(depending on the case) imply that Xi = 〈Sy | y ∈ R〉. We note that |S| is coprime to the orders
of R, Y,Q and every subgroup Xl where l 6= i. This implies that S ∈ Syls(G). If y ∈ R, then Sy is
not normal in RSy and hence it is not normal in G. So we may apply (2) to Sy and this yields that
Sy normalises Q. Conversely Q normalises Sy, again using (2). But then [Sy, Q] = 1. It follows that
[Xi, Q] = 1, contrary to (3). Thus n = 0.

Next let j ∈ {1, ..., k}. Let pj ∈ π(Yj) and assume that Yj is not a pj-group. Then Yj is a {2, pj}-group
satisfying Lemma 2.23 (iv) (b) or a Λ∗-group, so we argue similarly to the previous paragraph. In both
cases there exist m ∈ N, pairwise distinct prime numbers s, r1, ..., rm, an s-subgroup S, an r1-subgroup
R1,..., and an rm-subgroup Rm of Yj such that Yj = S(R1 × ... × Rm) and S is not normal in Yj .
Let R := R1 × ... × Rm. Then Yi = 〈Sa | a ∈ R〉, S ∈Syls(G) and (2) yields that [Sa, Q] = 1. Hence
[Yj , Q] = 1, contrary to (3).
Now Yj is a pj-group and we recall that pj does not divide the order of Q and of the subgroups Yl
where l 6= j. In fact Yj ∈Sylpj (G) and Yj is M9-free, hence modular (see Theorem 2.9 and Lemma
2.10).

(5) There is at most one index j ∈ {1, ..., k} such that YjQ is not L8-free.
Proof. Assume otherwise and assume without loss that Y1Q and Y2Q are both not L8-free. Then
Theorem 3.15 is applicable by (3) and it yields that Y1 and Y2 are 3-groups. But these groups have
coprime order, so this is impossible.

(6) Suppose that i ∈ {1, ..., k} is such that YiQ is not L8-free. Then Q ∼= Q8 and the action of Q on
Yi is not faithful.
Proof. First Lemma 3.2 implies that Q is not cyclic. Moreover Q is a 2-group by Theorem 3.15. As
G is a counter-example, it follows that G 6= YiQ and hence there exists some j ∈ {1, ..., k} such that
i 6= j. Using (5) we deduce that YjQ is L8-free. As Q is a 2-group, we know that Yj is not a 2-group
and hence Theorem 2.14 gives that Yj is not hamiltonian. Then we deduce from Theorem 2.25 that
Q ∼= Q8 (because Q is not cyclic). The remainder follows from Corollary 3.10.

(7) Let i, j ∈ {1, ..., k} be such that i 6= j. Then CQ(Yi) 6= CQ(Yj).
Proof. Assume that this is false, and without loss CQ(Y1) = CQ(Y2). By (5) we may suppose that
Y1Q is L8-free. If Y2Q is not L8-free, then (6) yields that Q ∼= Q8 and that Q does not act faithfully
on Y2. Then by assumption it also acts non-faithfully on Y1. But this contradicts Lemma 2.23. Thus
Y2Q is also L8-free.
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Now we consider CQ(Y1). This is a proper subgroup of Q by (3) and hence we may choose a subgroup
Q1 of Q such that CQ(Y1) ≤ Q1 and |Q1 : CQ(Y1)| = q.
Assume that Q1

∼= Q8. Then Case (iv)(b) of Lemma 2.23 holds (applied to Y1Q1) and so Q1 acts
faithfully on Y1, whereas |CQ(Y1)| = 4. This is impossible. Thus Theorem 2.25 yields that Q1 is cyclic
and that Case (iv)(a) of Lemma 2.23 or Case (i) of Lemma 2.24 holds. In particular all subgroups of
Q1 are normal in Q1. With notation as in (4) we may suppose that p1 > p2, because Y1 and Y2 have
coprime order. In particular p1 ≥ 3 and hence Y1 is elementary abelian, and Y2 is elementary abelian
or isomorphic to Q8. (Moreover in the elementary abelian case Q1 acts irreducibly or by inducing
power automorphisms.) In the power automorphism case we will use the fact that Q1 normalises every
subgroup of prime order and hence acts irreducibly on every such subgroup.

If Y2 is elementary abelian, then we choose normal subgroups N1 of Y1 and N2 of Y2 such that Q1 acts
non-trivially and irreducibly on both of them, and we consider the group (N1 ×N2)Q1/CQ1(Y1).
Then we let M1 := N1CQ1(Y1)/CQ1(Y1), M2 := N2CQ1(Y1)/CQ1(Y1) and H := Q1/CQ1(Y1).
If Y2 ∼= Q8, then we choose N1 as before and we consider (N1×Y2)Q1/Z(Y2)CQ1

(Y1). Then we let M1 :=
N1Z(Y2)CQ1

(Y1)/Z(Y2)CQ1
(Y1), M2 := Y2CQ1

(Y1)/Z(Y2)CQ1
(Y1) and H := Q1Z(Y2)/Z(Y2)CQ1

(Y1).

In both cases we have that |H| = q, that M1 is a p1-group and M2 is a p2-group and that H acts
non-trivially and irreducibly on M1 and on M2.
Since (M1 ×M2)H is a section of G, it is M9-free by hypothesis. Now we will find a contradiction by
constructing a lattice isomorphic to M9 in the following way:
We set A := M1H, C := M2H and D := H = A ∩ C. Since p1 ≥ 3 and H is not normal in A, we find
subgroups S and T of A that are conjugate to H, but distinct from H and from each other. All these
groups have order q and hence intersect pairwise trivially. It follows from the irreducible action of H
on M1 that any two distinct members of {S, T,H} generate A.
Now we argue in C, with the aim to find subgroups U, V of C that are conjugate to H and distinct
from it and from each other. This is clear if p2 ≥ 3. Otherwise p2 = 2 and the non-trivial action of H
on M2 forces |M2| > 2, so M2 is elementary abelian of order at least 4 and Q1 does not centralise any

element in M#
2 . Again we find the desired conjugates of H.

Now 〈H,U〉 = 〈U, V 〉 = 〈H,V 〉 = C.
We also know that U acts irreducibly on M1 and on M2. Therefore M1U and M2U = C are the unique
maximal subgroups of (M1 ×M2)H that contain U . But M1U ∩A = M1 and M2U ∩A = C ∩A = H
and this means that neither S nor T is contained in one of these maximal subgroups.
In a similar way we deduce that 〈S, V 〉 = 〈T, V 〉 = (M1 × M2)H and this means that the lattice
generated by {1, S, T, U, V,D,M1H,M2H, (M1 ×M2)H} is isomorphic to M9.
This is a contradiction.

(8) There is a unique i ∈ {1, ..., k} such that YiQ is not L8-free.
Proof. Assume otherwise. Then there is no such index i by (5) and in particular Y1Q is L8-free.
We know from Theorem 2.25 that Q is cyclic or isomorphic to Q8. If Q is cyclic, then Y1Q is as in
Lemma 2.23 (iv) (a) or as in Lemma 2.24 (i). Hence it satisfies Definition 2.27. The same holds for
Y2Q, ..., YkQ (if they exist). But then (7) implies that G is a Λ∗-group, hence L8-free, and then G
satisfies the conclusion of the theorem. This is false.
This means that Q ∼= Q8. It follows from Lemma 2.23, for all j ∈ {1, ..., k}, that Q acts faithfully on
Yj . Then (7) forces k = 1, so G = Y1Q and this is again a contradiction.

Using (8) we suppose that Y1Q is not L8-free. Then it follows from (6) that Q ∼= Q8, and Theorem
3.15 implies that Y1 is a normal 3-subgroup of G. As G is a counter-example, we have that k ≥ 2.
Using Theorem 2.25 we deduce that Q acts faithfully on Y1, and (7) implies that k = 2. Consequently
G = Q(Y1 × Y2), and this is the structure of a Q∗8-group. However, this contradicts our choice of G as
a counter-example. �

Theorem 4.8. The group G is M9-free if and only there are n ∈ N and subgroups G1, ..., Gn of G of
pairwise coprime orders such that the following holds:

(i) G = G1 × ...×Gn;
(ii) for all k ∈ {1, ..., n} the group Gk is L8-free or a Q∗8-group or a {2, 3}∗-group.

Proof. This follows from Theorems 4.5 and 4.7. �
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