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Abstract

It is well known that if an elementary abelian p-group P acts on a p’-group @ and
Q = [Q, P], then Q = ([Cg(A),P] | A < P of index p). Does a similar statement
hold for Cg(P) ? Under further assumptions, the answer is yes. Goldschmidt proves
theorems of this flavour in [1] and [2] and uses them to construct signalizer functors.
For the same reason we prove a result of this type, under the assumption that @ is
soluble.
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1 Preliminaries

We collect a few results about coprime action. These are well known and can
be found in group theory books, for example in [3], Chapter 8. Throughout this
paper, all groups are supposed to be finite and we follow standard notation

(e-g- [3])-
Coprime Action

Let 7w be a set of primes and let P be a m-group which acts on a 7n’-group
G. Let p be a prime. For any elementary abelian p-group P, we denote by
Hyp(P) and Hyp?(P) the set of all the subgroups of P of index p and p?
respectively. We refer to the elements of Hyp(P) as hyperplanes of P.

(i) If Nisa P-invariant normal subgroup of G, then C¢/n(P) = Cq(P)N/N.
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(ii) We have G = [G, P|Cq(P) and |G, P] = [G, P, P]. If G is abelian, then
G =[G, P] x Cg(P).

(iii) Suppose that G is the product of two P-invariant subgroups G and Gb.
Then Cg(P) = CGl(P)CG2<P)

(iv) If P is an elementary abelian p-group, then G = (Cg(A) | A € Hyp(P))
and [G, P] = ([Ca(A), P]| A € Hyp(P)).

2 A theorem about coprime action

Theorem

Let p be a prime. Suppose that the central product AAq acts coprimely on the
soluble group G with G = [G, Ag|, where A is an elementary abelian p-group
of rank at least 3. Furthermore, let B < A and H := Cg(ApB). Then

H={([Co(X), Al N H | X € Hyp*(4)) .

Proof. Let G be a minimal counterexample and set
Hy = ([Ca(X), Ao) N H | X € Hyp*(A)).

We note that G is not abelian because otherwise G = [G, Ag] X Cg(Ag) by
Coprime Action (ii). This implies that C(Ap) < G’ since the factor group
G /G’ is abelian.

Now let R be a maximal AAg-invariant subgroup of G containing G’, so that
R<G, and let Ry := [R, Ag]. We note that Cg(Ag) < G' < R and by Coprime
Action (ii), therefore, R = RyCq(Ap). Coprime Action (iv) implies that we
can find a hyperplane Y of A such that G = RC(Y). As G = [G, Ay, the
subgroup U := [Cs(Y), Ao| is not contained in R. Now U is AAp-invariant
and so G = RU. Let N be a minimal AAj-invariant normal subgroup of G.

We proceed towards a contradiction in small steps.

(1) G = (Ro, U).

Proof. We have G = RU = Cg(Ap)(Ro,U). As (Ry,U) is Ap-invariant,
this gives G = [G,Ao] = [Cg(A0)<R0, U>,A0] = [<R0, U>,A0] < <R07 U>
]

(2) H = Hy(H N N).

Proof. The minimality of G implies that the theorem holds in the factor
group G/N. Hence HN/N = ([Cq/n(X), A)) N HN/N | X € Hyp*(A)).
Using Coprime Action (i) and (iii) and the fact that the theorem holds in



G/N, we obtain HN/N = HyN/N. Now HN = HyN and the statement
holds by Dedekind’s Law. O

Suppose that V. = [V, Ag] is a proper A-invariant subgroup of G. Then
NLV. IfVLG, then VAN = 1.

Proof. The theorem holds in V' and therefore H NV < Hy. If N is con-
tained in V then HNN < HNV < H, contradicting (2) together with the
fact that GG is a counterexample. If V' is normal in G, it follows VNN =1
by the minimal choice of N. Il

Suppose that D is an AAp-invariant normal subgroup of G and that
D £ Z(G). Then

(i) G=RyD or G=UD.

(ii) D is not a minimal AAg-invariant normal subgroup.

Proof. Let L := [D, Ry][D,U]. Then the hypothesis and (1) yield 1 #
L < G and therefore without loss N < L. By Coprime Action (iii) we
have LN H = OL(A()B) = C[D,Rg}(AOB)C[D,U](AOB)'

Assume that RyD # G # UD. Then D; := [RyD, Ag] is a proper AAy-
invariant subgroup of G which means HND; < Hy. Now Ry = [Ry, Ao <
Dy < RyD and it follows [Ry, D] < [Rg, RoD] < D;. Therefore we have
[Ro,D] N H <Dy N H < Hy and similarly [U,D] N H < H,. But
as NNH < LNH = Cip,ry(AB)Cip,u)(AgB), this implies N N H <
([Ro, D] N H)([U,D] N H) < Hy contradicting (2). As a consequence
we have G = RyD or G = UD as stated.

To prove (ii), suppose that D is minimal. Then since G is soluble, D
is elementary abelian and by (i) we have two cases to consider:

If G = RyD, then R = Ro(D N R) by Dedekind’s Law. The minimality
of D implies R = Ry or R = RyD = (. Both cases lead to a contradiction.

If G = UD, we recall that U centralises a hyperplane Y of A. Applying
Coprime Action (iv), we can also find a hyperplane Y of Y such that
Cp(Yp) # 1. But Cp(Yp) QUD = G and then, by minimality, D cen-
tralises Yp. Now Yp € Hyp*(A) is centralised by all of G which is not
possible since G is a counterexample. O

N < Z(G) < H.

Proof. For the first inclusion, we assume that N ¢ Z(G) and apply
(4)(ii). This immediately yields a contradiction. Now all the subgroups of
N are normal in G which implies H NN = N or H NN = 1. The second
case is not possible by (2). Thus N < H. Applying Coprime Action (ii)
to the action of AgB on Z(G) yields Z(G) = [Z(G), AoB] x Czc)(AoB).
Since N is contained in the second factor, we obtain [Z(G), AgB] = 1
(otherwise N could be chosen in [Z(G), ApB]) and finally Z(G) < H. O

We note that Z(G) N Ry = 1 because otherwise N could be chosen in
Z(G) N Ry contradicting (3).



Now we choose M < G to be AAg-invariant, contained in R and such
that M/Z(G) is a minimal AAp-invariant normal subgroup of G/Z(G).

(6) G=UM, [M,Ao #1 and M is abelian.

Proof. By choice, M £ Z(G) and thus the first statement follows from
(4)(i) and the fact that RyM < R # G.

Since M/Z(G) is elementary abelian, M is nilpotent. First assume
that [M, Ag] = 1. Then [Ag, M,G] =1 = [M,G, Ap] and hence [G, M| =
|G, Ag, M| = 1 by the 3-Subgroups-Lemma, a contradiction. Now 1 #
[M, Ag] < M N Ry and therefore M N Ry is a nontrivial normal subgroup
of M. This implies that M N RyN Z(M) # 1 because M is nilpotent, and
in particular Z(M) N Ry # 1.

Assume that Z(M)N Ry < Z(G). Then Z(M)N Ry < Z(G) N Ry =1,
a contradiction (see above). So Z(M) N Ry is not contained in Z(G) and
in particular 1 # Z(M) £ Z(G). The choice of M forces Z(M) =M. O

(7) G centralises a subgroup of A of index p*.

Proof. We recall that U centralises a hyperplane Y of A. Now Coprime
Action (iv), applied to the action of Y on M /Z(G), gives a hyperplane Yj,
of Y such that Chz(c)(Yar) # 1. Since, by (6), M is abelian, this forces
[M,Yy] < M. But G = UM implies that [M,Y),] is normal in G. By
the minimal choice of M, we have [M,Yy] < Z(G). With X :=Y NYyy,
we see |G, X] = [UM,X] = [M,X] < Z(G) and therefore [X,G, Ag] <
[Z(G), Ag] = 1. But [Ap, X,G] = 1 and then the 3-Subgroups-Lemma
yields [G, X] = [G, Ag, X| = 1. By definition X has index p? in A. O

Now (7) contradicts the fact that G is a counterexample. This final
contradiction proves the theorem.

A natural way to generalise the above theorem is to try and replace Hyp?(A)
by Hyp(A). However, this more general version does not hold, as the following
example illustrates:

Let p, ¢ and r be primes such that p divides r — 1 and ¢ — 1 is divisible by
both r and p. This choice is possible, e.g. p = 3, r = 7 and ¢ = 43. Then let
R be a cyclic group of order r and suppose that the cyclic group P of order p
acts non-trivially on R. Moreover let V' be a p-dimensional vectorspace over
GF(q) such that R and P act on V, V = [V, R] and dim(Cy(P)) = 1. These
choices are possible because of the particular way we picked the primes. We set
G :=VR. Now since R = [R, P] < [G, P] <G, we have (RY) < [G, P]. On the
other hand, it follows V = [V, R] < (R%) < [G, P] and therefore G = [G, P).



Next we construct an elementary abelian p-group A which acts on G. We
understand PR as a subgroup of GL(V') and let Z be a cyclic group of order p
of Z(GL(V)). Then Z centralises PR and acts as a non-trivial group of scalar
automorphisms on V. Finally let U be a cyclic group of order p centralising
Z, P, Rand V. Set Ag .= P, A:=U X Z x Ay and B = 1. Now A is an
elementary abelian group of order p* and the central product A4, = A acts
coprimely on the soluble p’-group G. As we have seen above, (G, Ag] = G. Let
H :=Cg(AyB) = Cg(Ap). Then we show

([Ca(X), AJN H | X € Hyp(A)) = 1.
(But clearly H # 1.)
Assume that there exists an X € Hyp(A) such that [Cq(X), Ag]JNH # 1. Then
in particular [Ce(X), Ag] # 1 and thus Ay £ X. This implies A = X x A

and it follows that [Ce(X), Ao N H < Cu(X) N Cs(Ay) < Cu(A). But by
construction Ci(A) = 1, a contradiction.
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