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Abstract. For a germ of a smooth map f from Kn to Kp and a subgroup GΩq

of any of the Mather groups G for which the source or target diffeomorphisms
preserve some given volume form Ωq in Kq (q = n or p) we study the GΩq

-
moduli space of f that parameterizes the GΩq

-orbits inside the G-orbit of f .
We find, for example, that this moduli space vanishes for GΩq

= AΩp
and

A-stable maps f and for GΩq
= KΩn

and K-simple maps f . On the other
hand, there are A-stable maps f with infinite-dimensional AΩn

-moduli space.

Introduction

We are going to study singularities arising in unimodular geometry. A singular
subvariety of a space with a fixed volume form may be given by some parametriza-
tion or by defining equations. This leads to the following (multi-)local classification
problems. (1) The classification of germs of smooth maps f : (Kn, 0)→ (Kp, Ωp, 0)
(K = C or R) up to AΩp

-equivalence (i.e., for the subgroup of A in which the left
coordinate changes preserve a given volume form Ωp in the target), and also of
multi-germs of such maps up to AΩp

-equivalence. (2) The classification of variety-

germs V = f−1(0) ⊂ (Kn, Ωn, 0) up to KΩn
-equivalence of f : (Kn, Ωn, 0)→ (Kp, 0)

(i.e., for the subgroup of K in which the right coordinate changes preserve a given
volume form Ωn in the source). More generally, we will consider volume preserving
subgroups GΩq

of any of the Mather groups G = A, K, L, R and C preserving a
(germ of a) volume form Ωq in the source (for q = n) or target (for q = p). (See
the survey [50] for a discussion of the groups G and their tangent spaces LG, or see
the beginning of §3 below for a brief reminder.)

These subgroups GΩq
of G fail to be geometric subgroups of A and K in the sense

of Damon [11, 12], hence the usual determinacy and unfolding theorems do not hold
for GΩq

. In this situation moduli and even functional moduli often appear already
in codimension zero, and e.g. for RΩn

this is indeed the case: a Morse function
has a functional modulus (and hence infinite modality) in the volume preserving
case [49]. Hence it might appear surprising that Martinet wrote 30 years ago in his
book (see p. 50 of the English translation [37]) on the AΩp

classification problem
in unimodular geometry that the groups involved “are big enough that there is
still some hope of finding a reasonable classification theorem”. It turns out that
Martinet was right – the results of this paper imply, for example, that over C the
classifications of stable map-germs for AΩp

and for A agree, and hence Mather’s [40]
nice pairs of dimensions (n, p). Furthermore, the classifications of simple complete
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intersection singularities agree for KΩn
and for K. Over R a G-orbit (G = A or

K) corresponds to one or two orbits in the volume preserving (hence orientation
preserving) case, otherwise the results are the same.

We will now summarize our main results. For any of the above Mather groups G,
let Gf denote the stabilizer of a map-germ f in G and let Ge, as usual, denote the
extended pseudo group of non-origin preserving diffeomorphisms. The differential
of the orbit map of f (sending g ∈ G to g · f) defines a map γf : LG → LG · f
with kernel LGf . Let LGq

f be the projection of LGf onto the source (for q = n)

or the target factor (for q = p). Notice that, for example, the group G = R can be
viewed as a subgroup R × 1 of A with Lie algebra LR⊕ 0 – allowing such trivial
factors 1 enables us to define the projections LGq

f for all Mather groups G, which
will be convenient for the uniformness of the exposition. For a given volume form
Ωq in (Kq, 0) we have a map div :Mq · θq → Cr sending a vector field (vanishing
at 0) to its divergence, where r = q for all GΩq

except KΩp
(we use here the

following standard notation: Cq denotes the local ring of smooth function germs on
(Kq, 0) with maximal ideal Mq, and θq denotes the Cq module of vector fields on
(Kq, 0)). For KΩp

we consider linear vector fields in (Kp, 0) with coefficients in Cn,
the divergence of such a vector field is an element of Cn. We will show that for the
(infinitesimal) GΩq

moduli spaceM(GΩq
, f) we have the following isomorphism

M(GΩq
, f) :=

LG · f

LGΩq
· f
∼=

Cr

div(LGq
f )

.

For KΩn
the vector space on the right is in turn isomorphic to the nth cohomology

group of a certain subcomplex of the de Rham complex associated with any finitely
generated ideal I in Cn (defined in Section 4), taking I = 〈f1, . . . , fp〉 (the ideal
generated by the component functions fi of f). For AΩp

we obtain an analogous
isomorphism by taking the vanishing ideal I of the discriminant (for n ≥ p) or the
image (for n < p) of f , provided LAp

f (also known as Lift(f)) is equal to Derlog of
the discriminant or image of f .

Furthermore, if LG has the structure of a Cr-module (this is the case for all GΩq

except AΩn
) then dimM(GΩq

, f) is equal to the number of GΩq
moduli of f (for

AΩn
this equality becomes a lower bound). This will be shown in the following

way. The notion of GΩq
-equivalence of maps f and g (for a given volume form Ωq)

is easily seen to be equivalent to the following notion of Gq
f -equivalence of volume

forms Ωq and Ω′
q (for a given map f): Ω′

q ∼Gq

f
Ωq if and only if for some h ∈ Gq

f

we have that h∗Ω′
q = Ωq. It then turns out that a pair Ωq and Ω′

q (that in the

case of R defines the same orientation) can be joined by a path of Gq
f equivalent

volume forms if and only if Ω′
q − Ωq = d(ξ⌋Ω) for some ξ ∈ LGq

f and any volume

form Ω in (Kq, 0). And the number of Gq
f moduli of volume forms (and hence of

GΩq
moduli of f) is given by the dimension of the space Λq/{d(ξ⌋Ω) : ξ ∈ LGq

f}

(here Λq denotes the space of q-forms in (Kq, 0)), which turns out to be equal to
dimCq/div(LGq

f ).

If, furthermore, M(GΩq
, f) = 0 then, over C, we have at the formal level (and

also in the smooth category, provided the sufficient vanishing condition w.q.h. for
M(GΩq

, f) below holds)

GΩq
· f = G · f
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Over R, the orbit G · f consists of one or two GΩq
-orbits, due to orientation as

mentioned above. More precisely, if G+ denotes the subgroup of G for which the
elements of the q-factor of G are orientation-preserving then GΩq

· f = G+ · f .
For the most interesting groups GΩq

we have the following sufficient conditions
for the vanishing of M(GΩq

, f), namely certain weak forms of quasihomogeneity.
We call f weakly quasihomogeneous for GΩq

if f is q.h. for weights wi ∈ Z and
weighted degrees δj such that the following conditions hold.

• For GΩq
= AΩp

: all δj ≥ 0 and
∑

j δj > 0.

• For GΩq
= KΩn

: all wi ≥ 0 and
∑

i wi > 0.
• For GΩq

= KΩp
:

∑

j δj 6= 0.

Notice that any f with some zero component function (up to the relevant G-
equivalence) is w.q.h. for AΩp

and KΩp
(and also for LΩp

and CΩp
), and any f

such that df(0) has positive rank is w.q.h. for KΩn
and KΩp

. These “trivial forms
of weak quasihomogeneity” correspond to the fact that diffeomorphisms of a proper
submanifold in (Kq, 0) can be extended to volume preserving diffeomorphisms of
(Kq, Ωq, 0). Furthermore, if f is GΩq

-w.q.h. then the statement about equality of
G- and GΩq

-orbits over C (and the corresponding one over R) in the previous para-
graph holds in the smooth category (where smooth means complex-analytic over
C and C∞ or real-analytic over R, as usual). For a GΩq

-w.q.h. map f the above
(generalized) weights and weighted degrees yield a generalized Euler vector field in
(Kq, 0) (q = n or p) that allows us to integrate the (a priori formally defined) vector
fields at the infinitesimal level to give the required smooth diffeomorphisms.

For f not GΩq
-w.q.h. we are interested in upper and lower bounds for the

dimension ofM(GΩq
, f) and in the question whether the G-finiteness of f implies

the finiteness ofM(GΩq
, f). We have several results in this direction.

(1) For any GΩq
for which there is a version of weak quasihomogeneity we have

the following easy upper bound (in the formal category) for G-semiquasihomogeneous
(s.q.h.) maps f = f0 + h, where f0 q.h. (and hence GΩq

-w.q.h.) and G-finite
and h has positive degree (relative to the weights of f0). The normal space
NG · f0 := Mn · θf0

/LG · f0 (where θf0
denotes the Cn-module of sections of

f∗
0 TKp) decomposes into a part of non-positive filtration and a part of positive

filtration, denoted by (NG · f0)+. Denoting the number of G-moduli of positive
filtration of f by m(G, f) we have the inequality

dimM(GΩq
, f) + m(G, f) ≤ dim(NG · f0)+.

(Note that the same inequality holds for the extended pseudo-groups Ge, GΩq ,e.)
For GΩq

= AΩp
all our examples support the following conjecture: for f as above,

the upper bound is actually an equality. For A-s.q.h. map-germs f : (Kn, 0) →
(Kp, Ωp, 0) with n ≥ p − 1 and (n, p) in the nice range of dimensions or of corank
one (outside the nice range) the validity of this conjecture would have an interesting
consequence. Following Damon and Mond [13] we denote by µ∆(f) the discriminant
(for n ≥ p) or image (for p = n + 1) Milnor number of f (the discriminants and
images ∆(f) in these dimensions are hypersurfaces in the target, and ∆(ft) of a
stable perturbation ft of f has the homotopy type of a wedge of µ∆(f) spheres).
For a q.h. map-germ f0 we have cod(Ae, f0) = µ∆(f0) for n ≥ p by the main result
in [13] and for p = n+1 by Mond’s conjecture (see Conjecture I in [10], for n = 1, 2
this conjecture has been proved by Mond and others). Now if our conjecture is true
we obtain for s.q.h. maps f = f0 + h the following interesting consequence of these
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results:

cod(AΩp,e, f) = µ∆(f).

For (n, p) = (1, 2) the invariant µ∆(f) is just the classical δ-invariant, hence we
recover the formula cod(AΩp,e, f) = δ(f) of Ishikawa and Janeczko [29] in the
special case of s.q.h. curves (their formula holds for any A-finite curve-germ).
Notice that for f = f0 + h we have µ∆(f) = µ∆(f0) (because any deformation by
terms of positive filtration is topologically trivial). Our conjecture implies that the
coefficients of each of the dim(NAe · f0)+ terms of h are moduli for AΩp,e (some
of them may be moduli for Ae too), hence cod(AΩp,e, f) = cod(Ae, f0) = µ∆(f0),
which gives the formula above.

(2) For GΩq
= KΩn

we have more general results (in the analytic category)
which, for example, imply the following. For any K-finite map f the moduli
space M(KΩn

, f) is finite dimensional. Furthermore, if f−1(0) lies in a hyper-
surface h−1(0) having (at worst) an isolated singular point at the origin then
dimM(KΩn

, f) ≤ µ(h) (notice that if f = (g1, . . . , gp) defines an ICIS then we
can take a generic C-linear combination h =

∑

i aigi having finite Milnor number
µ(h)).

(3) For GΩq
= AΩp

the moduli spaceM(AΩp
, f) is finite dimensional for maps f

whose image (or discriminant) has (at worst) an isolated singularity at the origin.
This applies to A-finite maps f : (Cn, 0)→ (Cp, 0) with p ≥ 2n or p = 2 (and any
n). For the other pairs of dimensions (n, p) we only have the finiteness results for
A-s.q.h. maps (see (1) above).

(4) For GΩq
= AΩp

and KΩn
we have the following criterion for dimM(GΩq

, f) ≥
1: suppose f0 is q.h. and the restriction of γf0

: LG → LG · f0 to the filtration-0
parts of the modules in source and target has 1-dimensional kernel, then the param-
eter u of a deformation f = f0 + u ·M by some non-zero element M ∈ (NG · f0)+
is a modulus for GΩq

. Using this criterion in combination with the existing A- and
K-classifications in the literature we conclude the following. Suppose f : (Cn, 0)→
(Cp, 0) is A-simple and n ≥ p or p = 2n or (n, p) = (2, 3), (1, p) (and any corank)
or (n, p) = (3, 4) and corank 1 then: f is w.q.h. if and only if dimM(AΩp

, f) = 0.
Or suppose that f has K-modality at most one, rank(df(0)) = 0 and n ≥ p then:
f is q.h. if and only if dimM(KΩn

, f) = 0.
The contents of the remaining sections of this papers are as follows.
§1. Brief summary of earlier related works: by considering the moduli spaces

M(GΩq
, f) parameterizing the GΩq

-orbits inside G · f one can relate the seemingly
unrelated earlier works on volume-preserving diffeomorphisms in singularity theory.
§2. H-isotopic volume forms: for a subgroup H of the group of diffeomorphisms

Theorem 2.8 gives a criterion for a pair of volume forms to be H-isotopic, and
Proposition 2.13 gives a sufficient condition on LH under which all pairs of volume
forms are H-isotopic. The results will be applied to the subgroups H = Gq

f defined
above.
§3. The moduli space M(GΩq

, f): the space parameterizing the GΩq
-orbits in

a given G-orbit is isomorphic to Cr/div(LGq
f ) (Theorem 3.4) and it vanishes for

GΩq
-w.q.h. maps f (Proposition 3.8). These results imply, for example, that (over

C) the stable orbits for AΩp
and A and the simple orbits for KΩn

and K agree (see
Remark 3.10).
§4. A cohomological description of M(GΩq

, f) and some finiteness results: for
finitely generated ideals I in Cn we define a subcomplex (Λ∗(I), d) of the de Rham
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complex whose nth cohomology vanishes for w.q.h. ideals I (Theorem 4.4). For I =
f∗Mp (not necessarily w.q.h.) Hn(Λ∗(I)) is isomorphic toM(KΩn

, f) and is finite
if I contains the vanishing ideal of a variety W with (at worst) an isolated singular
point at 0, see Theorem 4.13 (for a hypersurface germ W we have Hn(Λ∗(I)) ≤
µ(W ), see Theorem 4.14). These finiteness results imply for example: M(KΩn

, f)
is finite if f defines an ICIS, and M(AΩp

, f) is finite for p ≥ 2n and A-finite f .
§5. The foliation of A-orbits by AΩp

-orbits: in those dimensions (n, p), for which
the classification of A-simple orbits is known, an A-simple germ f is w.q.h. if and
only if M(AΩp

, f) = 0. The classifications of the AΩp
-simple orbits in dimensions

(n, 2) and (n, 2n), n ≥ 2, are described in Propositions 5.2, 5.3 and 5.4. In §5.3
the foliation of s.q.h. but not w.q.h. A-orbits by AΩp

-orbits is investigated for
A-unimodal germs into the plane, and in §5.4 weak quasihomogeneity is defined for
multigerms under AΩp

-equivalence.
§6. The foliation of K-orbits by KΩn

- and KΩp
-orbits: a K-unimodal germ f

of rank 0 is q.h. if and only if M(KΩn
, f) = 0, and M(KΩn

, f) = 0 implies
M(KΩp

, f) = 0 (recall that germs f of positive rank are trivially w.q.h., hence their
K-, KΩn

- and KΩp
-orbits coincide). Examples of rank 0 germs f defining an ICIS of

codimension greater than one are presented for which dimM(KΩn
, f) < µ(f)−τ(f).

For hypersurfaces we have dimM(KΩn
, f) = µ(f)− τ(f) (by a result of Varchenko

[48]), in all our higher codimensional examples we have dimM(KΩn
, f) ≤ µ(f) −

τ(f) (and for s.q.h. germs f it is easy to see that this inequality holds in general).
§7. The groups GΩq

6= AΩp
, KΩn

, KΩp
: in the final section we consider the

remaining groups GΩq
for which there are G-finite singular maps (as opposed to

functions). Examples indicate that already G-stable, singular and not trivially
w.q.h. maps f have positive modality for these groups GΩq

(for AΩn
the fold map

even has infinite modality).

1. Brief summary of earlier related works

Having defined the moduli space M(GΩq
, f) we can now conveniently describe

the known results within this framework. Most of these results are on functions
(hypersurface singularities), and (as explained above) one can either fix f and
classify volume forms in the presence of a hypersurface defined by f (up to Gq

f = Rn
f ,

An
f orKn

f -equivalence) or fix a volume form and classify functions up to GΩq
= RΩn

,

AΩn
or KΩn

-equivalence. Much less is known for maps (see §1.2).

1.1. Results on functions (hypersurface singularities). First, consider RΩn
-

equivalence for functions f : (Kn, Ωn, 0) → K, n ≥ 2. The isochore Morse-Lemma
from the late 1970s by Vey [49] and Colin de Verdière and Vey [9] gives a normal
form for an A1 singularity involving a functional modulus. More recently isochore
versal deformations were studied in [8] and [22]. The following result by Francoise
[19, 20] generalizes the isochore Morse-Lemma: let b1 = 1, b2, . . . , bµ(f) be a base
for NRe · f then

M(RΩn
, f) ∼= K{(hi ◦ f)bi : hi ∈ C1, i = 1, . . . , µ(f)}.

Hence f has precisely µ(f) functional moduli (the hi are arbitrary smooth function-
germs in one variable).

Second, for AΩn
it is clear that (keeping the above notation) (h1 ◦ f)1 ∈ LLe · f ,

hence

M(AΩn
, f) ∼= K{(hi ◦ f)bi : hi ∈ C1, i = 2, . . . , µ(f)}.
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This moduli space vanishes for an A1 singularity, and non-Morse functions f have
µ(f)− 1 functional moduli.

Finally, for KΩn
the situation is much better. The following generalization of

the corresponding Kn
f classification of volume forms has been studied, for example,

by Arnol’d [1], Lando [32, 33], Kostov and Lando [31] and Varchenko [48]: given a
hypersurface f−1(0) and a non-vanishing function-germ h, classify n-forms of the
type fahdx1 ∧ . . . ∧ dxn up to diffeomorphisms that preserve f−1(0). For a = 0
we have the special case of volume forms, and in this case the result of Varchenko
gives

M(KΩn
, f) ∼= 〈f,∇f〉/〈∇f〉,

which has dimension µ(f) − τ(f). Both Francoise and Varchenko made extensive
use of results of Brieskorn [5], Sebastiani [47] and Malgrange [35] on the de Rham
complex of differential forms on a hypersurface with isolated singularities.

We will see that this dimension formula forM(KΩn
, f) does, in general, not hold

for map-germs f defining an ICIS of codimension greater than one. The obvious
counter-examples are weakly quasihomogeneous maps f that are not quasihomoge-
neous: for such f the dimension of the moduli space is zero, but µ(f) − τ(f) > 0.
More subtle counter-examples (Example 6.2 below) are the members of Wall’s K-
unimodal series FW1,i of space-curves (which are not weakly quasihomogeneous):
here the dimensions of the moduli spaces are equal to one and µ − τ is equal to
two.

1.2. Results for maps. Motivated by Arnold’s classification of A2k singularities
of curves in a symplectic manifold [3] Ishikawa and Janeczko [29] have (in our
notation) classified all AΩp

-simple map-germs f : (C, 0) → (C2, Ωp, 0). Notice

that the volume-preserving diffeomorphisms of C2 are also symplectomorphisms.
Looking at their classification we observe thatM(AΩp

, f) = 0 if f is the germ of a
q.h. curve. Furthermore, it is shown in [29] that cod(AΩp,e, f) = δ(f), hence the
A-finiteness of f (which is equivalent to δ(f) < ∞) implies the finiteness of the
moduli spaceM(AΩp

, f).
Notice that for p = 1 any volume-preserving diffeomorphism of (Kp, 0) is the

identity. For functions the groups GΩq
, where q = n, are therefore the only ones of

interest, and the results in §1.1 (which could be reproved using our approach) com-
pletely settle the classification problem for function-germs in the volume-preserving
case. We will therefore concentrate on maps of target dimension p > 1 (but all gen-
eral results also hold for p = 1, of course).

2. H-isotopic volume forms

In this section we study H-isotopies joining pairs of volume forms for subgroups
H ofDq := Diff(Kq, 0). In the subsequent sections we will always apply these results
to the subgroups H = Gq

f introduced in the introduction, but it might be worth
mentioning that the results of this section have some additional applications, for
example to singularities of vector fields (and the proofs remain valid for subgroups
H of the group of diffeomorphisms of an oriented, compact, smooth q-dimensional
manifold).

Let Λk denote the space (of germs) of smooth differential k-forms on (Kq, 0), and
denote the subset of Λq of (germs of) volume forms by Vol. For a given subgroup
H ⊂ Dq we consider a Cq-module M in the Lie algebra LH of H (and M = LH
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if LH itself is a Cq-module). In the following Ω and Ωi always denote (germs of)
volume forms in (Kq, 0).

Definition 2.1. We say that Ω0 and Ω1 are H-diffeomorphic if there is a diffeo-
morphism Φ ∈ H such that Φ∗Ω1 = Ω0

Definition 2.2. We say that Ω0 and Ω1 are H-isotopic if there is a smooth family
of diffeomorphisms Φt ∈ H for t ∈ [0, 1] such that Φ∗

1Ω1 = Ω0 and Φ0 = Id.

Remark 2.3. Two H-isotopic volume forms Ω0 and Ω1 are obviously H-diffeomorphic.
The converse is not true in general. For example dx1 ∧ dx2 and −dx1 ∧ dx2 are
diffeomorphic but not isotopic, since any diffeomorphism mapping one to the other
changes orientation.

Definition 2.4. We say that Ω0 and Ω1 are M -equivalent if there is a vector field
X ∈M such that Ω0 − Ω1 = d(X⌋Ω) (for any volume form Ω).

Remark 2.5. Definition 2.4 does not depend on the choice of a volume form Ω. If
Ω′ is another volume form then Ω = fΩ′ for some non-vanishing function f . Then
Ω1 − Ω0 = d(X⌋Ω) = d(fX⌋Ω′) and fX ∈M (M being a module).

Theorem 2.6. If Ω0 and Ω1 are M -equivalent volume forms, which for K = R

define the same orientation, then Ω0 and Ω1 are H-isotopic.

Proof. We use Moser’s homotopy method [42]. Let Ωt = Ω0 + t(Ω1 − Ω0) for
t ∈ [0, 1]. It is easy to see that if Ω0 and Ω1 define the same orientation then
Ωt ∈ Vol for any t ∈ [0, 1]. We are looking for a family of diffeomorphisms Φt ∈ H ,
t ∈ [0, 1], such that

(2.1) Φ∗
t Ωt = Ω0

and Φ0 = Id. Differentiating (2.1) we obtain

Φ∗
t (LYt

Ωt + Ω1 − Ω0) = 0,

where Yt ◦ Φt = d
dtΦt, which implies that

(2.2) d(Yt⌋Ωt) = Ω0 − Ω1.

But Ω0 and Ω1 are M -equivalent, hence there exists a vector field X ∈M such that
Ω0 − Ω1 = d(X⌋Ω) for some volume form Ω. We want to find a family of vector
fields Yt satisfying the following condition:

(2.3) Yt⌋Ωt = X⌋Ω.

But Ωt = gtΩ for some non-vanishing smooth function gt. Hence Yt = (1/gt)X is
a solution of (2.3) and Yt ∈ M , because X ∈ M and M is a module. The vector
field Yt vanishes at the origin, hence its flow exists on some neighborhood of the
origin for all t ∈ [0, 1]. Integrating Yt we obtain a smooth family of diffeomorphisms
Φt ∈ H for t ∈ [0, 1] such that Φ0 = Id and Φ∗

t Ωt = Ω0, which implies that Ω0 and
Ω1 are H-isotopic. �

Next, we will show that for subgroups H of Dq with LH a submodule of the
Cq-module θq the existence of an H-isotopy between a pair of volume forms is
equivalent to the LH-equivalence of this pair, provided that LH is closed with
respect to integration in the following sense.

Definition 2.7. We say LH is closed with respect to integration if for any smooth

family Xt ∈ LH , t ∈ [0, 1], the integral
∫ 1

0 Xtdt belongs to LH .
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Theorem 2.8. Let LH be a submodule of θq, which is closed with respect to inte-
gration. Over K = R we also assume that Ω0 and Ω1 define the same orientation.
Then Ω0 and Ω1 are LH-equivalent if and only if Ω0 and Ω1 are H-isotopic.

Proof. The ”only if” part follows directly from Theorem 2.6.
For the converse, we require the following lemma

Lemma 2.9. Let Φt be a smooth family of diffeomorphisms and let Xt be a family
of vector fields such that d

dtΦt = Xt ◦ Φt. Then d
dtΦ

−1
t = −(Φ∗

t Xt) ◦ Φ−1
t .

Proof of Lemma 2.9. Differentiating Φ−1
t ◦ Φt = Id we obtain

0 =
d

dt
(Φ−1

t ◦ Φt) =
d

dt
(Φ−1

t ) ◦ Φt + d(Φ−1
t )

d

dt
Φt,

which implies that d
dt(Φ

−1
t ) = −d(Φ−1

t )(Xt ◦Φt) ◦Φ−1
t . But, by definition, Φ∗

t Xt =

d(Φ−1
t )(Xt ◦ Φt). �

Returning to the proof of the theorem, we assume that Ω0 and Ω1 are H-isotopic.
Then there exists, for all t ∈ [0, 1], a smooth family of diffeomorphisms Φt ∈ H
such that Φ0 = Id and Φ∗

1Ω0 = Ω1. Let (Φt)
′ = d

dtΦt = Xt ◦ Φt, then

Ω1 − Ω0 = Φ∗
1Ω0 − Ω0 =

∫ 1

0

(Φ∗
t Ω0)

′dt =

∫ 1

0

(Φ∗
tLXt

Ω0)dt =

∫ 1

0

Φ∗
t d(Xt⌋Ω0)dt =

d

(
∫ 1

0

Φ∗
t (Xt⌋Ω0)dt

)

= d

(
∫ 1

0

(Φ∗
t Xt)⌋Φ

∗
t Ω0)dt

)

= d

(
∫ 1

0

(Φ∗
t Xt)⌋htΩ0)dt

)

for some smooth family of positive functions ht. Thus

Ω1 − Ω0 = d

(
∫ 1

0

htΦ
∗
t Xtdt⌋Ω0

)

.

Lemma 2.9 implies Φ∗
t Xt ∈ LH , and using the fact that LH is a module we also have

htΦ
∗
t Xt ∈ LH . And LH is closed with respect to integration, hence

∫ 1

0
htΦ

∗
t Xtdt

belongs to LH too. Therefore Ω0 and Ω1 are LH-equivalent, as desired. �

Definition 2.10. The divergence of a vector field X ∈ θq with respect to a given
volume form Ω is, by definition, the smooth function divΩ(X) = d(X⌋Ω)/Ω. When
the volume form Ω is understood from the context then we simply write div(X).
And we have a map div : θq → Cq defined by X 7→ div(X).

Corollary 2.11. Under the assumption of Theorem 2.8 the number of H-moduli
of volume forms is equal to

dimK

Cq

div(LH)
.

Proof. It is easy to see that spaces Cq/div(LH) and Λq/{d(X⌋Ω) : X ∈ LH} are
isomorphic. By Theorem 2.8 the number of H-moduli of volume forms is equal to
the dimension of Vol/ ∼LH . But it is easy to see that the spaces Λq/{d(X⌋Ω) :
X ∈ LH} and Vol/ ∼LH are equal if there exists a X ∈ LH such that d(X⌋Ω) is a
volume form. Otherwise Λq/{d(X⌋Ω) : X ∈ LH} \ Vol/ ∼LH is a linear subspace
of positive codimension in Λq/{d(X⌋Ω) : X ∈ LH}. This implies that

dimK

Λq

{d(X⌋Ω) : X ∈ LH}
= dimK Vol/ ∼LH .

�
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Next, we describe two sufficient conditions for the existence of a single M -
equivalence class of volume forms in (Kq, 0) (recall M is a Cq-module in LH).
For the first sufficient condition we require the following

Definition 2.12. A linear vector field

Ew =

q
∑

i=1

wixi
∂

∂xi
.

with integer coefficients wi is called a generalized Euler vector field (for coordinates
(x1, . . . , xq) ∈ Kq and weights w = (w1, . . . , wq)).

We first consider generalized Euler vector fields with non-negative weights wi (for
positive weights we obtain the usual Euler vector fields). For KΩp

-equivalence we
also require linear vector fields with negative coefficients (see Theorem 3.9 below).

Proposition 2.13. Let X be the germ of a smooth vector field on (Kq, 0) which is
locally diffeomorphic to a generalized Euler vector field with non-negative weights
and positive total weight. If X generates a Cq-module in LH then any two germs
of volume forms (which over K = R define the same orientation) are H-isotopic.

Proof. Let Ew be (the germ of) the Euler vector field for a coordinate system
(x, y) = (x1, . . . , xk, y1, . . . , yq−k) with weights w = (w1, . . . , wk, 0, · · · , 0), where
w1, · · · , wk are positive and let Ω0 be the germ of the volume-form dx1 ∧ . . . ∧
dxk ∧ dy1 ∧ . . .∧ dyq−k. By Theorem 2.6, it is enough to show that for any smooth
q-form ω on (Kq, 0) there exists a smooth function-germ g on (Kq, 0) such that
ω = d(gEw⌋Ω0).

Let Gt(x, y) = (ew1tx1, . . . , e
wktxk, y1, . . . , yq−k) for t ≤ 0. It is easy to see that

(Gt)
′ :=

d

dt
Gt = Ew ◦Gt, G0 = Id, lim

t→−∞
Gt(x, y) = (0, y)

for any (x, y) ∈ Kq. Thus

(2.4) ω = G∗
0ω − lim

t→−∞
G∗

t ω =

∫ 0

−∞

(G∗
t ω)′dt.

But ω = fΩ0 for some smooth function-germ f and

(G∗
t ω)′ = G∗

t LEw
ω = G∗

t d(Ew⌋ω) = d(G∗
t (Ew⌋ω)),

hence
(G∗

t ω)′ = d(G∗
t (Ew⌋fΩ0)) = d((f ◦Gt)G

∗
t (Ew⌋Ω0)).

One then checks by a direct calculation that G∗
t (Ew⌋Ω0) = et

P

k
i=1 wi(Ew⌋Ω0).

Therefore (G∗
t ω)′ = d((f ◦ Gt)e

t
P

k
i=1 wi(Ew⌋Ω0)). Combining this with (2.4) we

obtain

ω = d(

∫ 0

−∞

((f ◦Gt)e
t

P

k
i=1

wi)dt(Ew⌋Ω0)) = d(g(Ew⌋Ω0)),

where g is a function-germ on (Kq, 0) defined as follows:

g(x, y) =

∫ 0

−∞

(et
P

k
i=1

wi(f(Gt(x, y)))dt.

The function-germ g is smooth, because
∫ 0

−∞

(et
P

k
i=1

wi(f(Gt(x, y)))dt =

∫ 1

0

(sαf(Fs(x, y))ds,
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where α = (
∑k

i=1 wi)− 1 and

Fs(x1, . . . , xk, y1, . . . , yq−k) = (sw1x1, . . . , s
wkxk, y1, . . . , yq−k)

for any (x, y) = (x1, . . . , xk, y1, . . . , yq−k) and s ∈ [0, 1]. Multiplying the weights by
a sufficiently large constant we may assume that α > 1. �

We conclude this section by stating a second sufficient condition for the existence
of a single M -orbit of volume forms. Here we assume that LH contains a module
MqX , where X is the germ of a non-vanishing vector field andMq is the maximal
ideal of Cq.

Proposition 2.14. If X ∈ θq, X(0) 6= 0, and the Cq-module MqX is contained
in LH then any two germs of volume forms (which over K = R define the same
orientation) are H-isotopic.

Proof. X(0) 6= 0 implies that X is diffeomorphic to ∂/∂x1. Any germ of a q-form
has in such a coordinate system, for some f ∈ Cq, the following form

f(x)dx1 ∧ dx2 ∧ · · · ∧ dxq = d(

∫ x1

0

f(t, x2, · · · , xq)dt
∂

∂x1
⌋dx1 ∧ dx2 ∧ · · · ∧ dxq).

And
∫ x1

0
f(t, x2, · · · , xq)dt∂/∂x1 belongs toMq∂/∂x1. Thus any two germs of vol-

ume forms (which over R define the same orientation) are H-isotopic, by Theorem
2.6. �

3. The moduli space M(GΩq
, f)

In this section we study smooth map-germs f : (Kn, 0) → (Kp, 0) (for K = C

smooth means complex-analytic, for K = R smooth means either C∞ or real-
analytic). We set R := Dn and L := Dp (one can compose f with elements of Dn

on the right and with elements of Dp on the left, which explains this notation).
Let G be one of the Mather groupsA,K,R,L or C (all of which can be considered

as subgroups of A or K, e.g. R× 1 ⊂ A) acting on the space of smooth map-germs
f : (Kn, 0)→ (Kp, 0). And let x = (x1, . . . , xn) and y = (y1, . . . , yp) be coordinates
on Kn and Kp, respectively. The differential of the orbit map g 7→ g · f (g ∈ G and
the action on f depends on the definition of G)

γf : LG −→ LG · f

has kernel LGf (where Gf is the stabilizer of f in G). Recall that for G = A the
map γf is given by

LA =Mnθn ⊕Mpθp →Mnθf , (a, b) 7→ tf(a)− ωf(b),

where tf(a) = df(a) and wf(b) = b ◦ f , and for G = K it is given by

LK =Mnθn ⊕ glp(Cn)→Mnθf , (a, B) 7→ tf(a)−B · f.

The kernel of γf inherits a Cr module structure from LG, where r = p (or r = n)
for G a subgroup of A (or K). Projecting onto source or target factors

LGn
f ←− LGf −→ LGp

f

preserves this Cr module structure. Denoting the factors of Gf by Gn
f and Gp

f

their Lie algebras are the above projections. We also denote the factors of G by
Gn and Gp (hence e.g. for G = A we have Gn = R). Superscripts always denote
projections onto one of the factors.
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Consider subgroups GΩn
and GΩp

of G in which the diffeomorphisms (or families
of diffeomorphisms for G = C, see below) preserve a given volume form Ωn or Ωp

in the source or target, respectively. For r = n or p and a given volume form Ωr

on Kr let div :Mqθq → Cr be the map that sends a vector field (vanishing at 0 in
K

n or K
p) to its divergence.

For K-equivalence in combination with a volume form in the target there are
two ways to define the CΩp

component. But both version yield identical KΩp
-orbits

(just as the alternative definitions of K yield the same K-orbits).
(1) In the original definition of K by Mather, C consists of diffeomorphisms

H = (φ(x), ϕ(x, y)) ∈ Dn+p, with ϕ(x, 0) = 0 for all x ∈ (Kn, 0), and the action on
f is given by H · f := ϕ(x, f ◦ φ(x)). We can think of H as a n-parameter family
of diffeomorphisms {ϕx}, x ∈ Kn, acting on f by sending x to ϕx ◦ f(x). If Ωp is a
volume form on (Kp, 0) we require that each ϕx preserves Ωp (i.e. ϕ∗

xΩp = Ωp for
all x ∈ (Kn, 0)). In this way we obtain a subgroup CΩp

of C, and KΩp
:= R · CΩp

(semi-direct product).
(2) In the linearized version of K we set C := GLp(Cn) and restrict to CΩp

=
SLp(Cn), then LCΩp

= slp(Cn) consists of p× p matrices over Cn with zero trace.
And, again, KΩp

:= R · CΩp
. Then div can be considered as a map B 7→ traceB

as follows: the map glp(Cn) → Mnθf , sending B to B · f (multiplication of f as
a column vector of its component functions by a matrix B = (bij)), can also be
written B ·f = XB ◦f , where XB =

∑p
i=1(bi1(x)y1 + . . .+bip(x)yp)∂/∂yi is a linear

vector field in Kp with coefficients bij ∈ Cn. Hence divXB = traceB ∈ Cn.
For any of the above volume preserving subgroups GΩq

of G we have the following

Proposition 3.1. For q = n or p, and div :Mqθq → Cr (where r = n for Gq
f = Kp

f

and r = q in all other cases), we have an isomorphism

M(GΩq
, f) :=

LG · f

LGΩq
· f
∼=

Cr

div(LGq
f )

.

Proof. Let π : LG → LGq be the projection onto one of the factors, so that for
u = (a, b) we have v := π(u) is equal to a ∈Mnθn or b, where either b ∈ Mpθp (for
G = A) or b = XB for some B ∈ glp(Cn) (for G = K). (Recall that in the latter
case div(XB) = traceB.) Then consider the epimorphism

β : LG −→ Cr, u 7→ div(v).

Factoring out the kernel we obtain an isomorphism

β̄ :
LG

LGΩq

−→ Cr.

We also have a well-defined map

γ :
LG

LGΩq

−→
Mn · θf

LGΩq
· f

sending [(a, b)] to [tf(a)−ωf(b)] (for G a subgroup ofA) and [(a, B)] to [tf(a)−B ·f ]
or, equivalently, [(a, XB)] to [tf(a)−XB ◦ f ] (for G a subgroup of K). We see that

imγ =
LG · f

LGΩq
· f

and that β̄(ker γ) = div(LGq
f ). Factoring out the kernel of γ yields an isomorphism

γ̄ onto imγ so that β̄ ◦ γ̄−1 is the desired isomorphism. �
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Remark 3.2. For G = A the vector fields (a, b) ∈ LAf , b ∈ LAp
f and a ∈ LAn

f are
also said to be f -related, liftable and lowerable, respectively.

Notice that LGq
f inherits a Cr module structure, where r = n or p, from LGf

and LG. In fact, we have

Lemma 3.3. LGf is a Cr-submodule of LG (r = p or n for G a subgroup of
G = A or K, respectively), which is closed under integration. The same is true for
the factors LGq

f of LGf .

Proof. The statements about the module structure are obvious. And for 1-parameter
families of vector fields vt = (at, bt) (for G = A) or (at, XBt

) (for G = K), t ∈ [0, 1],

in the kernel of γf we have 0 =
∫ 1

0
γf (vt)dt = γf (

∫ 1

0
vtdt), hence

∫ 1

0
vtdt ∈ LGf .

And it is clear that the q-component of
∫ 1

0 vtdt belongs to LGq
f . �

We can now deduce from Proposition 3.1 and Corollary 2.11 the following

Theorem 3.4. For all volume preserving subgroups GΩq
of G, except for AΩn

, the
dimension of

M(GΩq
, f) :=

LG · f

LGΩq
· f
∼=

Cr

div(LGq
f )

is equal to the number of GΩq
-moduli of f and also to the number of Gq

f -moduli

of volume forms in (Kq, 0). (For AΩn
the above statement holds in the formal

category, in the smooth category the number of moduli is at least dimM(AΩn
, f).)

Proof. In all cases, except LAn
f , the component LGq

f of LGf is a module over the

ring Cr appearing as the target of the map div :Mqθq → Cr. And LGq
f is closed

under integration, by the above lemma, hence Corollary 2.11 applies. For LAn
f

we notice that Proposition 3.1 is a statement about vector spaces (a Cr module
structure is not required). �

Remark 3.5. At this point it is perhaps useful to briefly recall the following. The
G-modality of a map-germ f is, roughly speaking, the least m such that a small
neighborhood of f can be covered by a finite number of m-parameter families of
G-orbits. (More precisely, we consider the jk(G)-orbits in some neighborhood of
jkf in a finite-dimensional jet-space Jk(n, p) for some k for which all these jk(G)-
orbits are G-sufficient – recall that the G-determinacy degree of f in general fails
to be upper semicontinuous under deformations of f , see [50] for a survey of results
on G-determinacy.) Map-germs f of G-modality 0, 1, 2, . . . are said to be G-simple,
G-unimodal, G-bimodal and so on. An m-G-modal family depends on no more
than m parameters (moduli), for G = R and function-germs it depends on exactly
m moduli [21]. For a subgroup GΩq

of a Mather group G and an m-parameter

family of map-germs fλ the dimension of M(GΩq
, fλ) is equal to the number of

GΩq
-moduli of fλ, and also to the number of Gq

fλ-moduli of volume forms in (Kq, 0),

for each fixed vector λ ∈ Km of G-moduli of fλ.

We are now interested in classes of map-germs f for which the moduli spaces
M(GΩq

, f) vanish. For the groups GΩq
= AΩp

, KΩn
and KΩp

such classes of maps
are given by the following weak forms of quasihomogeneity.

Definition 3.6. A map-germ f : (Kn, 0) → (Kp, 0), which is q.h. for weights
wi ∈ Z (1 ≤ i ≤ n) and weighted degrees δj (1 ≤ j ≤ p), is said to be weakly
quasihomogeneous (w.q.h.) for the group GΩq

if the following conditions hold.
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• For GΩq
= AΩp

: all δj ≥ 0 and
∑

j δj > 0.

• For GΩq
= KΩn

: all wi ≥ 0 and
∑

i wi > 0.
• For GΩq

= KΩp
:

∑

j δj 6= 0.

Remark 3.7. (i) The condition w.q.h. depends on the group GΩq
, when the group

is clear from the context we will simply say that f is w.q.h.
(ii) For any subgroup GΩq

6= AΩn
of G we have the following “trivial versions

of w.q.h” for f : (1) for q = p and f G-equivalent to some map-germ having a zero
component function, and (2) for q = n and df(0) of positive rank. For GΩq

= AΩp
,

KΩn
and KΩp

it is easy to see that “trivially w.q.h.” is a special case of w.q.h.:
for (1) we give the zero component function positive weighted degree (and set all
weights wi or all other degrees δj to zero), and for (2) we have (up to G-equivalence)
f = (x1, g(x2, . . . , xn)), so we take w1 = 1 and wi = 0, i > 1.

We then have the following

Proposition 3.8. Let f be w.q.h. for one of the groups GΩq
= AΩp

, KΩn
or KΩp

(or “trivially w.q.h.” for any group). Then M(GΩq
, f) = 0.

Proof. We will show that LGq · f ⊂ LGΩq
· f (here LGq · f is one of the factors of

LG · f), so that LGΩq
· f = LG · f .

For GΩq
= AΩp

we have to show that LL · f ⊂ LAΩp
· f . Clearly it is enough to

check this inclusion for the elements of LL · f that do not belong to LLΩp
· f . Let

yα =
∏

l y
αl

l and |α| ≥ 0. The following elements of LAΩp
·f yield ωf(yαyi ·∂/∂yi) ∈

LL · f , i = 1, . . . , p:

ωf(−(1 + αj)y1y
α · ∂/∂y1 + (1 + α1)yjy

α · ∂/∂yj), j = 2, . . . , p

together with

tf(f∗(yα)
n

∑

i=1

wixi · ∂/∂xi)−

p
∑

j=2

δj · ωf
(

−
1 + αj

1 + α1
yαy1 · ∂/∂y1 + yαyj · ∂/∂yj

)

= (1 + α1)
−1

p
∑

j=1

(1 + αj)δj · ωf(yαy1 · ∂/∂y1).

Notice that
∑

j(1 + αj)δj 6= 0, for any exponent vector α, is equivalent to f being
w.q.h. for the group AΩp

.
For GΩq

= KΩn
we have to show that LR · f ⊂ LKΩn

· f . Exchanging the roles
of the source and target vector fields, we see that the following elements of LKΩn

·f
yield tf(xαxi · ∂/∂xi) ∈ LR · f , i = 1, . . . , n:

tf(−(1 + αj)x1x
α · ∂/∂x1 + (1 + α1)xjx

α · ∂/∂xj), j = 2, . . . , n

together with

xα
n

∑

i=1

δifi · ∂/∂yi −

n
∑

j=2

tf
(

wj

(

−
1 + αj

1 + α1
x1x

α · ∂/∂x1 + xjx
α · ∂/∂xj

))

= (1 + α1)
−1

n
∑

j=1

(1 + αj)wj · tf(x1x
α · ∂/∂x1).

Notice that
∑

j(1 + αj)wj 6= 0, for any exponent vector α, is equivalent to f being
w.q.h. for the group KΩn

.
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For GΩq
= KΩp

we have to show that LC · f ⊂ LKΩp
· f . Notice that LCΩp

=
slp(Cn) consists of elements B of glp(Cn) with trace 0, hence we have a Cn-module
structure. Therefore, if Eij denotes a p× p matrix with entry (i, j) equal to 1 and
all other entries 0 then it is enough to show that Eii · f ∈ LKΩp

· f , for i = 1, . . . , p.
(Notice that this implies that LC · f ⊂ LKΩp

· f , both for the linearized version
GLp(Cn) of C and for Mather’s original C, because of the Cn-module structure.)
Taking for j = 2, . . . , p

−f1 · ∂/∂y1 + fj · ∂/∂yj

(corresponding to (Ejj − E11) · f with (Ejj − E11) ∈ LCΩp
) and

tf
(

n
∑

i=1

wixi · ∂/∂xi

)

−
(

(−δ2 − . . .− δp)E11 + δ2E22 + . . . + δpEpp

)

· f

=

p
∑

j=1

δjf1 · ∂/∂y1

we see that Eii · f ∈ LKΩp
· f (i = 1, . . . , p) provided that

∑

j δj 6= 0.
Finally, by the remark in the introduction, there is nothing to prove in the

“trivially w.q.h. cases” (arbitrary diffeomorphisms in a proper subspace can be
extended to volume preserving diffeomorphisms of the total space (Kq, 0)). �

The proposition says that, at the infinitesimal level, the tangent spaces of the
G-orbit and of the GΩq

-orbit of f coincide. For K = R let G+ be the subgroup of
G for which the diffeomorphisms of the Gq factor of G are orientation preserving.
We then have at the level of orbits the following

Theorem 3.9. Let f : (Kn, 0) → (Kp, 0) be w.q.h. for one of the groups GΩq
=

AΩp
, KΩn

or KΩp
(or “trivially w.q.h.” for any group) then:

(i) any two volume forms Ω, Ω′ on Kq (so that, in the case of K = R, Ω|0 and
Ω′|0 define the same orientation in T0Rq) are Gq

f -isotopic.

(ii) f ′ ∼G f (for K = C) and f ′ ∼G+ f (for K = R) imply f ′ ∼GΩq
f (for some

given volume form Ωq on Kq).

Proof. Using the weights wi (for q = n) or weighted degrees δj (for q = p) in the
definition of a GΩq

-w.q.h. map f we can define generalized Euler vector fields in
Cq. For GΩq

= AΩp
and KΩn

the vector fields have non-negative coefficients, hence
Proposition 2.13 implies statement (i). For KΩp

we can have negative coefficients
and we deduce statement (i) by a slightly modified argument (see below). The
equivalence of (i) and (ii) is clear (over C the G-orbits are connected).

For KΩp
-equivalence the weighted degrees δi of f yield a generalized Euler vector

field Eδ =
∑p

i=1 δiyi∂/∂yi in (Kp, 0). We first claim that any volume form Ωp is
Kp

f -equivalent to some linear volume form g(x)dy1∧· · · dyp parameterized by g ∈ Cn

with g(0) 6= 0. Let Ψ be an origin-preserving diffeomorphism of (Kp, 0) such that,
for Ωp = h(y)dy1 ∧ · · · ∧ dyp, we have Ψ∗Ωp = dy1 ∧ · · · ∧ dyp. Its inverse has the
form

Ψ−1(y) = (

p
∑

i=1

φ1i(y)yi, · · · ,

p
∑

i=1

φpi(y)yi).
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We have Ψ−1 ◦ f(x) = Φx ◦ f(x) for the following family Φx of diffeomorphisms of
(Kp, 0) parameterized by x ∈ (Kn, 0)

Φx(y) = (

p
∑

i=1

φ1i(f(x))yi, · · · ,

p
∑

i=1

φpi(f(x))yi).

Hence Ψ ◦Φx ◦ f = f (i.e., Ψ ◦Φx ∈ K
p
f ) and Φ∗

xΨ∗Ωp = g(x)dy1 ∧ · · · ∧ dyp, where

g(x) = det(dΦx). Clearly g(0) 6= 0, which implies the above claim.
It is therefore sufficient to consider the equivalence of parameterized linear vol-

ume forms. Notice that Eδ generates a Cn-submodule of LKp
f and

g(x)dy1 ∧ · · · ∧ dyp = d

(

g(x)
∑p

i=1 δi
Eδ⌋dy1 ∧ · · · ∧ dyp

)

(recall that
∑p

i=1 δi 6= 0), hence any pair of such volume forms is LKp
f -equivalent.

Furthermore, by the argument in the proof of Theorem 2.6, such a pair of volume
forms (which, for K = R, is required to define the same orientation) is Kp

f -isotopic.
�

“Non-trivial applications” of the above result – namely to weakly quasihomoge-
neous map-germs f that are neither quasihomogeneous nor trivially weakly quasi-
homogeneous – will be considered later. For quasihomogeneous and trivially quasi-
homogeneous germs f we have the following immediate applications.

Remark 3.10. (1) Quasihomogeneous case: all A-stable and all K-simple map-
germs f are quasihomogeneous. Hence the classifications, over C, of stable germs
for A and AΩp

and of simple germs for K, KΩn
and KΩp

agree – over R, each
A-stable or K-simple orbit corresponds to one or two stable or simple orbits for the
volume preserving subgroups.

(2) Trivially weakly quasihomogeneous case: (i) the classifications of map-germs
f , with df(0) of positive rank, for the groups K, KΩn

and KΩp
agree. (ii) For map-

germs f : (Kn, 0) → (Kp, 0) whose image lies in a proper submanifold of (Kp, 0)
(such f have, up to a target coordinate change, a zero component function) the A-
and AΩp

-orbits, the L- and LΩp
-orbits, and the C- and CΩp

-orbits agree. Notice, for
example, that the A and AΩp

classifications of simple curve-germs agree for p ≥ 7
(Arnol’d [2] has shown that all stably simple curves can be realized in 6-space,
hence all A-simple curves in higher dimensions have zero component functions).

4. A cohomological description of M(GΩq
, f) and some finiteness

results

The results onM(KΩn
, f) can be reformulated for ideals, and for this reformula-

tion we obtain a further isomorphism in terms of cohomology. This cohomological
description yields some finiteness results in the non-w.q.h. case. Let I ⊂ Cn be
a finitely generated ideal (recall: for Cn = On all ideals are f.g., for Cn = En, the
ring of C∞ function germs, there are non-f.g. ideals likeM∞

n ).
We say that I and J are Dn-equivalent if and only if there is a diffeomorphism

germ φ ∈ Dn such that φ∗I = J . The stabilizer of I is (Dn)I = {φ : φ∗I = I},
and

L(Dn)I = Derlog(I) = {Y ∈ θn : Y I ⊂ I},
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where, for h ∈ I, we set Y h := dh · Y . For I = 〈g1, . . . , gp〉 and f := (g1, . . . , gp) :
(Kn, 0)→ (Kp, 0) we have the following:

φ∗〈g1, . . . , gp〉 := 〈g1 ◦ φ, . . . , gp ◦ φ〉 = 〈g1, . . . , gp〉

if and only if f = B · (f ◦ φ) for some B ∈ GLp(Cn). Hence Derlog(I) = LKn
f , and

setting DΩn
:= {h ∈ Dn : h∗Ωn = Ωn} (for a given volume form Ωn in (Kn, 0)) we

have the following isomorphisms for the (infinitesimal) DΩn
-moduli space of I:

M(DΩn
, I) :=

Cn

div(Derlog(I))
∼=

Cn

div(LKn
f )
∼=

LK · f

LKΩn
· f

.

This moduli space is also isomorphic to the nth cohomology group of the following
complex (Λ∗(I), d). Defining for k = 0, . . . , n the vector spaces

Λk(I) := {α + dβ ∈ Λk : dI ∧ α ⊂ IΛk+1, dI ∧ β ⊂ IΛk}

we obtain a subcomplex (Λ∗(I), d) of the de Rham complex (Λ∗, d). Sometimes we
shall simply write Λ∗(I) = (Λ∗(I), d) and similarly for the other complexes defined
below (the differential is always the same d).

The nth cohomology group of the complex (Λ∗(I), d) is

Hn((Λ∗(I), d) = Λn/dΛn−1(I) = Λn/{dα ∈ Λn : dI ∧ α ⊂ IΛn}.

For a given volume form Ωn the map

Derlog(I) ∋ X 7→ X⌋Ωn ∈ {α ∈ Λn−1 : dI ∧ α ⊂ IΛn}

is an isomorphism. Notice that the tangent space to Λn can be identified with Cn,
and recall that divΩn

(X) = d(X⌋Ωn)/Ωn. Hence we see that

Hn((Λ∗(I), d)) ∼= Cn/div(Derlog(I)) ∼=M(DΩn
, I).

Furthermore, Theorem 2.8 implies the following

Proposition 4.1. Two volume forms (defining the same orientation) are (Dn)I-
isotopic if and only if they define the same cohomology class in Hn((Λ∗(I), d)).

Definition 4.2. We say that an ideal I in Cn is w.q.h. if it has a set of generators
g1, . . . , gp such that the corresponding map f = (g1, . . . , gp) is KΩn

-w.q.h. (notice
that this is a natural generalization of homogeneous ideals).

Remark 4.3. If the ideal I is w.q.h. then the variety defined by I is “quasihomo-
geneous with respect to a smooth submanifold” in the sense of [17].

We can now reformulate Theorem 3.9 as follows

Theorem 4.4. Let I be a w.q.h. ideal in Cn = On or En. For Cn = En we assume
that I is finitely generated, and (over R) D+

n denotes the group of orientation
preserving diffeomorphisms. Then we have the following:

(i) any two volume forms on Kn (which, in the case K = R, define the same
orientation in T0R

n) can be joined (via pullback) by a 1-parameter family of diffeo-
morphisms φt such that φ∗

tI = I (i.e., by a (Dn)I-isotopy).
(ii) For a given volume form Ωn, let DΩn

be the subgroup of Dn whose elements
preserve Ωn. Then φ∗I = J for some φ ∈ Dn (for K = C) or some φ ∈ D+

n (for
K = R) implies h∗I = J for some h ∈ DΩn

.
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Remark 4.5. For A-equivalence we have the following cohomological description.
Given a map-germ f : (Cn, 0) → (Cp, 0), let ∆f be the discriminant (for n ≥ p)
or the image (for n < p) of f . If f satisfies the necessary and sufficient condition
(namely, GTQ for n ≥ p or NHS for n < p) for the equality Derlog(I(∆f )) = Lift(f)
of Theorem 2 in [7] then we have the following isomorphism:

M(AΩp
, f) ∼= Hp((Λ∗(I(∆f ), d)),

here I(∆f ) is the vanishing ideal of ∆f ⊂ (Cp, 0). For the precise definitions of GTQ
(generically a trivial unfolding of a q.h. germ) and NHS (no hidden singularities)
we refer to [7].

Notice that f w.q.h. (for AΩp
) implies that the ideal I(∆f ) is weakly quasi-

homogeneous. But there are w.q.h. maps f that fail to be GTQ. We give two
examples illustrating these facts.

Example 4.6. The map f : (C3, 0)→ (C2, 0) given by f(x, y, x) = (x, xy+y5+y7z)
is w.q.h. with weights (4, 1,−2) and weighted degrees (4, 5). The discriminant of f
is the origin in (C2, 0). The critical set is the z-axis, which consists of A-unstable
points, hence f fails to be A-finite.

Example 4.7. In [7]

f : (C3, 0)→ (C2, 0), f(u, x, y) = (u, x4 + y4 + ux2y2)

is presented as an example of a non-GTQ map-germ. But f is weakly quasi-
homogeneous (for the weights (0, 1, 1)). Notice that, again, f fails to be A-finite.

One may not care much about such degenerate examples of infiniteA-codimension.
In Section 5 we describe more subtle examples of weakly quasi-homogeneous map-
germs that are A-finite and even A-simple.

Next, we will derive some finiteness results for Hn(Λ∗(I)) when I is not nec-
essarily w.q.h., and apply these to deduce GΩq

-finiteness from G-finiteness of f :
(Cn, 0)→ (Cp, 0) (for certain G and (n, p)). We assume here that K = C and that
all germs (at 0) are C-analytic. For I = 〈g1, . . . , gs〉 we denote the ideal of maximal
minors of the Jacobian of g = (g1, . . . , gs) (viewed as a map-germ) by J(g), and we
set ∇gi := J(gi). Recall that 〈g1, . . . , gs, J(g)〉 is the vanishing ideal of the set of
K-unstable points of g, so that (by the Nullstellensatz) g is K-finite if and only if
Mr

n ⊂ 〈g1, . . . , gs, J(g)〉, for some r <∞, or iff g has (at worst) an isolated singular
point at 0. Also notice that

〈g1, . . . , gs, J(g)〉 ⊂ 〈g1, . . . , gs,∇g1, · · · ,∇gs〉

implies that, for K-finite g, the ideal on the RHS of this inclusion has finite colength.
We will relate the complex Λ∗(I) to the following subcomplex of the de Rham

complex: (A∗
0(I), d), where Ak

0(I) = {α + dβ ∈ Λk : α ∈ IΛk, β ∈ IΛk−1}. If
I is the vanishing ideal of a variety V then this complex is called the complex of
zero algebraic restrictions to V (see [18], [17], [16]). The cohomology of the quotient
complex (Λ∗/A∗

0(I(V )), d) has been studied in detail in earlier works (see [43],[4],[5],
[47],[26],[27]). Notice that the k-th cohomology Hk(Λ∗/A∗

0(I)) of this quotient
complex and the (k + 1)-th cohomology Hk+1(A∗

0(I)) of the above subcomplex are
related by the map

d :
{ω ∈ Λk : dω ∈ Ak+1

0 (I)}

dΛk−1 +Ak
0(I)

−→
{γ ∈ Ak+1

0 (I) : dγ = 0}

dAk
0(I)

,
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which is an isomorphism by the exactness of the de Rham complex of germs of
differential forms on Cn.

We are interested in Hn(A∗
0(I)). First notice the following fact.

Proposition 4.8. If an ideal I in On has generators g1, . . . , gs, where each gi is
K-equivalent to a KΩn

-w.q.h. function-germ, then Hn(A∗
0(I)) = 0.

Remark 4.9. The hypothesis that each gi is K-equivalent to some function-germ
that is q.h. for non-negative weights and total positive weight (and hence KΩn

-
w.q.h.) does not require that the map g = (g1, . . . , gs) is KΩn

-w.q.h. (the source
diffeomorphisms in the K-equivalences can be different for each gi).

Proof. It is enough to show that any n-form in IΛn is the differential of a (n− 1)-
form in IΛn−1. Let ω =

∑s
i=1 giωi, where the ωi are n-forms. Any n-form on Cn

is closed and each gi = kiΦ
∗hi, where ki is a non-vanishing function-germ, Φi is

a diffeomorphism-germ and hi is w.q.h. with non-negative weights, at least one
of which is positive. We then apply the following lemma to each hi(Φ

−1
i )∗(kiωi)

separately.

Lemma 4.10. If h is w.q.h. then for any n-form ω there exists an (n− 1)-form β
such that hω = d(hβ).

Proof of Lemma 4.10. If h generates the vanishing ideal of {h = 0} then this is a
corollary of the relative Poincare lemma for varieties that are quasi-homogeneous
with respect to a smooth submanifold [17]. More generally (for 〈h〉 not necessarily
radical) we use the same method as in the proof of Proposition 2.13.

Let Ew be (the germ of) the Euler vector field for h and let Gt be the flow of Ew.
Then G∗

t h = eδth, where δ is quasi-degree of h. By direct calculation we obtain

(4.1) ω =

∫ 0

−∞

(G∗
t ω)′dt = d(hβ),

where β =
∫ 0

−∞
eδtG∗

t (Ew⌋ω)dt is a smooth (n− 1)-form. �

To conclude the proof of the proposition, we have from Lemma 4.10

giωi = Φ∗
i (hi(Φ

−1
i )∗(kiωi)) = Φ∗

i (d(hiβi)) = d(giαi),

where αi = 1
ki

Φ∗
i βi. Hence ω =

∑s
i=1 giωi = d(

∑s
i=1 giαi), as desired. �

We can now relate the dimensions of nth cohomology groups of the two complexes
in question.

Theorem 4.11. For g1, · · · , gs ∈ I we have

dimHn(Λ∗(I)) ≤ dim
On

〈g1, · · · , gs,∇g1, · · · ,∇gs〉
+ dimHn(A∗

0(〈g1, · · · , gs〉)).

Proof. For J := 〈g1, · · · , gs〉 ⊂ I, clearly JΛn−1 ⊂ Λn−1(I), which implies that

dimHn(Λ∗(I)) = dimΛn/d(Λn−1(I)) ≤ dimΛn/d(JΛn−1),

where dimΛn/d(JΛn−1) = dimΛn/An
0 (J )+dimAn

0 (J )/d(JΛn−1). Furthermore,
from

An
0 (J ) = {

s
∑

i=1

giωi + dgi ∧ σi : ωi ∈ Λn, σi ∈ Λn−1, i = 1, · · · , s}
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we see that Λn/An
0 (J ) is isomorphic to On/〈g1, · · · , gs,∇g1, · · · ,∇gs〉. Finally,

d(JΛn−1) = d(An−1
0 (J )) implies thatAn

0 (J )/d(JΛn−1) and Hn(A∗
0(J )) are equal.

�

Theorem 4.11 and Proposition 4.8 imply the following corollary

Corollary 4.12. If g1, · · · , gs ∈ I satisfy the conditions of Proposition 4.8 then

dimHn(Λ∗(I)) ≤ dim
On

〈∇g1, · · · ,∇gs〉
.

Proof. Proposition 4.8 implies that dimHn(A∗
0(〈g1, · · · , gs〉)) = 0, and gi ∈ 〈∇gi〉

(because gi is w.q.h.). �

We can now deduce the following finiteness results.

Theorem 4.13. Let W be a variety-germ with an isolated singularity at 0. If the
vanishing ideal of W is contained in I then dimHn(Λ∗(I)) <∞.

Proof. Let I(W ) be generated by g1, · · · , gs. Clearly g1, · · · , gs ∈ I and from
Theorem 4.11 we have

dimHn(Λ∗(I)) ≤ dim
On

〈g1, · · · , gs,∇g1, · · · ,∇gs〉
+ dimHn(A∗

0(I(W ))).

From the hypothesis on W we then obtain the finiteness of the dimensions on
the right: Hn(A∗

0(I(W ))) is finite by a result of Bloom and Herrera [4] and the
colength of 〈g1, · · · , gs,∇g1, · · · ,∇gs〉 in On is also finite for such W (see our earlier
remark). �

Theorem 4.14. Let 〈g〉 be the vanishing ideal of a hypersurface having an isolated
singularity at 0. If g is contained in I then dimHn(Λ∗(I)) ≤ µ(g), where µ(g) is
the Milnor number of g.

Proof. For 〈g〉 ⊂ I we obtain from Theorem 4.11

dimHn(Λ∗(I)) ≤ dim
On

〈g,∇g〉
+ dim Hn(A∗

0(〈g〉)).

The desired bound then follows from the following formula of Brieskorn [5] and
Sebastiani [47]: dimHn(A∗

0(〈g〉)) = µ(g) − τ(g), where τ(g) := dimOn/〈g,∇g〉 is
the Tjurina number of g. �

Remark 4.15. Theorem 4.13 implies that for a finitely generated ideal I =
〈g1, . . . , gp〉 corresponding to a K-finite map f = (g1, . . . , gp) the dimension of
Hn(Λ∗(I)) is finite dimensional. For the ideal of an ICIS we have a more pre-
cise bound. For a C-linear combination h =

∑p
i=1 aigi we have 〈h〉 ⊂ I, hence

dimHn(Λ∗(I)) ≤ µ(h) (for µ(h) < ∞ we apply Theorem 4.14, and otherwise
the upper bound is trivial). Furthermore, for a generic projection π : Cp → C,
(y1, . . . , yp) 7→

∑p
i=1 aiyi the Milnor number of h = π ◦ g, where g = (g1, . . . , gp), is

finite (recall the usual method for calculating the Milnor number of an ICIS).

The above finiteness results can be generalized to the case of subgroups H of
the group of germs of C-analytic diffeomorphisms of Cq. Using the isomorphism
θq ∋ X 7→ X⌋Ω ∈ Λq we can prove in the same way the following result.
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Theorem 4.16. Let J be an ideal in Oq generated by g1, · · · , gs. If J θq is con-
tained in LH then

dim
Oq

div(LH)
≤ dim

Oq

〈g1, · · · , gs,∇g1, · · · ,∇gs〉
+ dimHq(A∗

0(〈g1, · · · , gs〉)).

In particular we obtain the following

Corollary 4.17. Consider the image imf of a complex-analytic map-germ f :
(Cn, 0)→ (Cp, 0), and recall that LAp

f = Lift(f).

(a) If imf ⊂W , for some variety-germ W with an isolated singularity at 0, then
dimOp/div(LAp

f ) is finite.

(b) If imf ⊂ g−1(0), for some hypersurface germ g−1(0) with an isolated singu-
larity at 0, then dimOp/div(LAp

f ) ≤ µ(g).

Remark 4.18. Suppose that f : (Cn, 0) → (Cp, 0) is an A-finite map-germ with
target dimension p ≥ 2n. Then imf is a variety-germ with an isolated singularity
at 0, hence A-finiteness implies AΩp

-finiteness (in the sense that the moduli-space
M(AΩp

, f) is finite dimensional, by the above result). This generalizes the corre-
sponding result in [29] for plane curves.

Also, for map-germs f : (Cn, 0) → (C2, 0), n ≥ 2, for which LAp
f = Lift(f) is

equal to Derlog of the discriminant we have that the A-finiteness of f implies the
AΩp

-finiteness (notice, the discriminant is a curve with isolated singularities).
For p < 2n the image (for n < p) or the discriminant (for n ≥ p ≥ 3) of an A-

finite singular map-germ f in general has non-isolated singularities (except perhaps
for a generalized fold map f). Hence the above finiteness result cannot be applied.

5. The foliation of A-orbits by AΩp
-orbits

In this section we study the foliation of A-orbits of map germs f : (Kn, 0) →
(Kp, Ωp, 0) by AΩp

-orbits. Our main objective here is the classification of AΩp
-

simple orbits inside the A-simple orbits, and in dimensions (n, 2) and (n, 2n), n ≥ 2,
we give explicit lists (see §5.1 and §5.2). We also consider AΩp

-orbits of positive
modality that are s.q.h. but not w.q.h (see §5.3) and w.q.h. multigerms (see §5.4).

For the pairs (n, p) for which the A-simple orbits are known – i.e., for n ≥ p, (1, p)
any p, p = 2n, (2, 3) (any corank) and for (3, 4) (of corank 1), see the references
below – we find that:

(1) an A-simple germ is AΩp
-simple if and only if it does not lie in the closure

of the orbit of any non-weakly quasihomogeneous germ,
(2) for n < 2p and for p = 2n, with n ≤ 3, an A-simple germ is AΩp

-
simple if and only if it does not lie in the closure of the orbit of any
non-quasihomogeneous germ.

(The classifications of A-simple orbits can be found in the following papers:
(n, p) = (1, 2) [6], (1, 3) [23], (1, p) (p ≥ 3) [2], (n, 2n) (n ≥ 2) [30], (2, 3) [41], (3, 4)
[28], (n, 2) (n ≥ 2) [44, 46] and (3, 3) [36]. The survey in [25] describes the simple
singularities of projections of complete intersections, this a priori finer classification
corresponds to the A-classification for n ≥ p.)

After explaining the techniques for verifying the above claim, we will describe
two particular cases in detail. First, the classification of AΩp

-simple orbits in di-
mensions (n, 2), n > 1, because for p = 2 the volume preserving and the symplectic
classifications agree. Combining this classification with the one by Ishikawa and
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Janeczko [29] for curves (i.e., for (1, 2)) yields all simple map-germs into the sym-
plectic plane. And second, the classification of AΩp

-simple orbits in dimensions
(n, 2n), where “non-trivial” weakly quasihomogeneous germs (that are not quasi-
homogeneous nor “trivially w.q.h.”) start appearing.

Notice that the condition w.q.h. (for AΩp
) in Proposition 3.8 and Theorem 3.9 is

a sufficient condition for the absence of AΩp
-moduli, we do not know whether it is

necessary. However, for all A-simple germs in the dimension ranges (n, p) in which
the A-simple classification is known (see above) the condition w.q.h. is necessary
and sufficient for the absence of AΩp

-moduli. This obviously implies the criterion
above: an A-simple germ f is AΩp

-simple if and only if f is only adjacent to w.q.h.
germs. All known examples of A-simple map-germs f that fail to be w.q.h. are
of the form f = f0 + h, where f0 is quasihomogeneous, h is a monomial vector of
positive filtration (weighted degree) and the restriction of γf0

: LA → LA· f to the
filtration-0 parts (of the filtered modules in source and target) has 1-dimensional
kernel. In this situation the coefficient of h is a modulus for AΩp

(see Lemma 5.1
below).

Consider LAΩp
· f ⊂ LA · f = tf(Mn · θn) + wf(Mp · θp). For the subgroup

AΩp
= R × LΩp

of A we have to restrict the homomorphism wf : θp → θf ,
wf(b) = b ◦ f to divergence free vector fields b, hence LLΩp

· f is no longer a Cp-
module. Let Λd denote the K-vector space of homogeneous divergence free vector
fields in Kp of degree d. Notice that Λd is the kernel of the epimorphism

div : (θp)(d) :=
Md

p · θp

Md+1
p · θp

→ H(d−1) :=
Md−1

p

Md
p

,

which maps a vector field on Kp of degree d to its divergence. Hence

dimΛd = dim(θp)(d) − dimH(d−1) = (p− 1)
(

p+d−1
d

)

+
(

p+d−2
d

)

.

The dimΛd vector fields
∏

l 6=i

yαl

l ∂/∂yi,
∑

l

αl = d, i = 1, . . . , p

and (setting hyi
:= ∂h/∂yi)

−hyj
∂/∂y1 + hy1

∂/∂yj, h =
∏

l

yαl

l , α1, αj ≥ 1,
∑

l

αl = d + 1, j = 2, . . . , p

are clearly linearly independent and hence form a basis for Λd. The tangent space
to the LΩp

-orbit at f is then given by LLΩp
· f = f∗ ⊕d≥1 Λd.

The criterion in the next easy lemma is sufficient for detecting in the existing
classifications of A-simple orbits those which are foliated by an r-parameter family,
r ≥ 1, of AΩp

-orbits.

Lemma 5.1. Consider a map-germ fu : (Kn, 0) → (Kp, 0) of the form fu =
f + u ·M , where f is a quasi-homogeneous germ, u ∈ K and M = Xα · ∂/∂yj /∈
LA · f = LAΩp

· f is a monomial vector of positive weighted degree (with respect to
the weights of f). Then we have the following:

(i) The coefficient u is not a modulus for A-equivalence.
(ii) For a set of weights for which f is weighted homogeneous, let (θn)0, (θp)0

and (θf )0 denote the filtration-0 parts of the modules of source-, target-vector fields
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and vector fields along f , respectively. If the kernel of the linear map

γf : (θn)0 ⊕ (θp)0 → (θf )0, (a, b) 7→ tf(a)− wf(b),

of K-vector spaces is 1-dimensional then u is an AΩp
-modulus of fu.

Proof. Let f be weighted-homogeneous for the weights w1, . . . , wn, and associate
to the target variables the weights δ1, . . . , δp. Then the weighted degree of ∂/∂yi is
−δi so that f has filtration 0 and M has filtration r > 0.

For A-equivalence we consider the following element of LA · fu:

tfu(
n

∑

i=1

wixi · ∂/∂xi)− wfu(

p
∑

j=1

δjyj · ∂/∂yj) = ruM.

From Mather’s lemma (Lemma 3.1 in [38]) we conclude that the connected com-
ponents of K \ {0} of the parameter axis lie in a single A-orbit, hence u is not a
modulus for A.

For the second statement we observe that dimker γf = 1 implies that this kernel
is spanned by the pair of Euler vector fields (Ew, Eδ) in source and target (which
is unique up to a multiplication by an element of K∗). And M /∈ LA · f implies
that the only generator of M in LA · fu must be of the form tfu(a)− wfu(b) with
(a, b) a non-zero multiple of (Ew, Eδ). But Eδ has non-zero divergence, hence this
generator does not belong to LAΩp

· fu. Now Mather’s lemma implies that u is a
modulus for AΩp

. �

5.1. AΩp
-simple, hence symplectically simple, maps from n-space to the

plane. The following classification, in combination with Ishikawa and Janeczko’s
classification of plane curves [29], provides a complete list of simple map-germs
into the plane C2, up to source diffeomorphisms and target symplectomorphisms
(volume preserving diffeomorphisms of C2 are symplectomorphisms).

Proposition 5.2. Any AΩp
-simple map-germ f : (Cn, 0) → (C2, 0), n ≥ 2, is

equivalent to one of the following normal forms (here Q =
∑n−2

i=1 z2
i for n > 2 and

Q = 0 for n = 2): (x, y); (x, y2 + Q); (x, xy + y3 + Q); (x, y3 + xky + Q), k > 1;
(x, xy + y4 + Q).

Proof. Any A-simple germ in dimensions (n, 2), n ≥ 2, which does not appear in the
above list, is adjacent to one of the following germs (for n > 2, up to a suspension
by Q defined above): (x, xy + y5 + y7), (x, xy2 + y4 + y5) or (x2 + y3, y2 + x3)
(see the adjacency diagrams in [44] and [46]). These three germs fail to be weakly
quasihomogeneous and they satisfy the hypotheses of Lemma 5.1, hence they have
at least one modulus for AΩp

. In fact, the parameter a in (x, xy + y5 + ay7),

(x, xy2 + y4 + ay5 + . . .) and (x2 + ay3, y2 + x3) is a modulus for AΩp
. �

5.2. AΩp
-simple maps from n-space to 2n-space. In the same way we obtain

the AΩp
-simple germs in dimensions (n, 2n), n ≥ 2 (notice that n = 1 again corre-

sponds to the classification in [29]). Except for the appearance of a series of w.q.h.
germs (see the last two normal forms in Proposition 5.4 below, corresponding to
type 22k and 23 in [30]), which are not q.h. nor trivially w.q.h., this classification
follows from the classification of A-orbits (and some information about adjacencies
between these orbits) in [30], using the same arguments as in dimensions (n, 2).
The classifications in dimensions (2, 4) and (n, 2n), n ≥ 3, are as follows.
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Proposition 5.3. Any AΩp
-simple map-germ f : (C2, 0) → (C4, 0) is equiva-

lent to one of the following normal forms: (x, y, 0, 0); (x, xy, y2, y2k+1), k ≥ 1;
(x, y2, y3, xky), k ≥ 2; (x, y2, y3+xky, xly), l > k ≥ 2; (x, y2, x2y+y2k+1, xy3), k ≥
2; (x, y2, x2y, y5); (x, y2, x3y+y5, xy3); (x, xy, xy2 +y3k+1, y3), k ≥ 1; (x, xy, xy2 +
y3k+2, y3), k ≥ 1; (x, xy + y3k+2, xy2, y3), k ≥ 1; (x, xy, y3, y4); (x, xy, y3, y5).

Proposition 5.4. Any AΩp
-simple map-germ f : (Cn, 0) → (C2n, 0), n ≥ 3, is

equivalent to one of the following normal forms (here x denotes x1, . . . , xn−1, and
notice that the last two normal forms are only AΩp

-simple for n ≥ 4):
(x, y, 0, . . . , 0)
(x, x1y, . . . , xn−1y, y2, y2k+1), k ≥ 1
(x, x2y, . . . , xn−1y, y2, y3, xk

1y), k ≥ 2
(x, x2y, . . . , xn−1y, y2, y3 + xk

1y, xl
1y), l > k ≥ 2

(x, x2y, . . . , xn−1y, y2, x2
1y + y2k+1, x1y

3), k ≥ 2
(x, x2y, . . . , xn−1y, y2, x2

1y, y5)
(x, x2y, . . . , xn−1y, y2, x3

1y + y5, x1y
3)

(x, x3y, . . . , xn−1y, y2, x2
1y, x2

2y, y3 + x1x2y)
(x, x3y, . . . , xn−1y, y2, x2

1y, x2
2y, y3)

(x, x3y, . . . , xn−1y, y2, x1x2y, (x2
1 + x3

2)y, y3 + x2
2y)

(x, x3y, . . . , xn−1y, y2, x1x2y, (x2
1 + x3

2)y, y3 + x3
2y)

(x, x3y, . . . , xn−1y, y2, x1x2y, (x2
1 + x3

2)y, y3)
(x,xy, x1y

2 + y3k+1, y3), k ≥ 1
(x,xy, x1y

2 + y3k+2, y3), k ≥ 1
(x, x1y + y3k+2, x2y, . . . , xn−1y, x1y

2, y3), k ≥ 1
(x, x1y, x2y + y3k+2, x3y, . . . , xn−1y, x1y

2 + y3l+1, y3), l > k ≥ 1
(x, x1y, x2y + y3k+2, x3y, . . . , xn−1y, x1y

2 + y3l+2, y3), l > k ≥ 1
(x, x1y + y3l+2, x2y + y3k+2, x3y, . . . , xn−1y, x1y

2, y3), l > k ≥ 1
(x,xy, y3, y4)
(x,xy, y3, y5)
(x, x1y + y3, x2y, . . . , xn−1y, x1y

2 + y2k+1, x2y
2 + y4), for k = 2 and n ≥ 4

(x, x1y + y3, x2y, . . . , xn−1y, x1y
2 + y5, y4), for n ≥ 4.

Proof. Except for the germs of type 22k and 23 in dimensions (n, 2n), n ≥ 4 (these
are the last two germs in the second list above), all A-simple germs in [30] are either
quasihomogeneous or they satisfy the hypotheses of Lemma 5.1 and hence have at
least one AΩp

-modulus.

Consider, then, the series 22k of map germs (Cn, 0)→ (C2n, 0), n ≥ 3 given by:

gk = (x1, . . . , xn−1, x1y + y3, x2y, . . . , xn−1y, x1y
2 + y2k+1, x2y

2 + y4), k ≥ 2.

The germs 22k are not semi-quasihomogeneous: if we write gk = f + y2k+1 · e2n−1

then the weighted homogeneous initial part f is not A-finite. For n = 3 all the
germs 22k are A-simple, for n ≥ 4 only 222 is A-simple (the germs 22≥3 do not
have an A-modulus, but they lie in the closure of non-simple A-orbits), see [30].

Now consider AΩp
-equivalence. Writing fu = f + u · y2k+1 · e2n−1 we see that

dimker γf = n − 2. For n = 3 part (ii) of Lemma 5.1 therefore implies that
the coefficient u is an AΩp

-modulus. For n ≥ 4 the germs fu are weakly quasi-
homogeneous (take weights w(x1) = w(x2) = w(y) = 0 and w(xi) = 1, i ≥ 3) and
AΩp

-equivalent to gk (for u 6= 0).
For the germ of type 23 the argument is the same. �
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5.3. Semi-quasihomogeneous, but not weakly quasihomogeneous, singu-
larities. Non-w.q.h. maps have a decomposition f = f0 + h with f0 q.h. and h
of positive degree (relative to the weights of f0). The normal space NA · f0 :=
Mn · θf0

/LA · f0 decomposes into a part of non-positive filtration and a part of
positive filtration, denoted by (NA · f0)+. Using the fact that LAΩp

· f0 = LA · f0

and Mather’s lemma we obtain the following formal pre-normal form for an element
of an AΩp

-orbit inside A · f :

f ′ = f0 +
∑

hi∈B(f0)+

aihi,

where B(f0)+ denotes a base for (NA · f0)+ as a K-vector space. Notice that for
semi-quasihomogeneous maps f the above sum is finite (because f0 is A-finite),
otherwise it is infinite.

Preliminary empirical examples indicate that in the s.q.h. case (where f0 is A-
finite) the above pre-normal for f ′ is in fact a (formal) normal form for AΩp

. In
this case the coefficients ai are independent moduli for AΩp

(some ai might also be
moduli for A). If this observation holds in general for s.q.h. maps in dimensions
(n, p), n ≥ p − 1, (and Conjecture I in [10] is true) then such maps f satisfy the
formula

cod(AΩp,e, f) = µ∆(f)

as pointed out in the introduction (here µ∆ denotes the discriminant Milnor number
(for n ≥ p) or the image Milnor number (for p = n + 1)). Also notice that for
n ≥ p we have cod(AΩp,e, f) ≤ µ∆(f), independent of the correctness of the above
conjectures.

Let us consider some examples in dimensions (n, 2), n ≥ 2.

Example 5.5. The A-simple non-w.q.h. germs in dimensions (n, 2) have the fol-
lowing formal normal forms for AΩp

(the normal forms (∗) are not s.q.h. and Q

denotes a sum of squares in additional variables): (x, xy + y5 + ay7 + Q); (x, xy2 +
y5 + ay6 + by9 + Q); (x, x2y + y4 + ay5 + Q); (∗) (x, xy2 + y4 +

∑

k≥2 aky2k+1 + Q);

(∗) (x2 + ay2l+1, y2 + x2m+1), l ≥ m ≥ 1.
The first three normal forms f are s.q.h. and their AΩp,e-codimensions are equal

to the Ae-codimensions of their initial parts f0, and these are given by 3, 5 and 4,
respectively. And from [13] we have the formula µ∆(f) = µ(Σf ) + d(f) (relating
the discriminant Milnor to the Milnor number of the critical set and the double-fold
number), which gives for the three normal forms 3 = 0+3, 5 = 1+4 and 4 = 2+2,
respectively.

The two series of non-s.q.h. maps f (marked by (∗)) are GTQ in the sense of [7]
and the Milnor numbers of their discriminant curves ∆f (not to be confused with
the discriminant Milnor numbers of f) are 2k+7 and 2(l+m)+3, respectively. These
Milnor numbers are upper bounds for the AΩp

-moduli space of f (by Remark 4.18).
Formal calculations (at the infinitesimal level using Mather’s lemma) actually show
that dimM(AΩp

, (x2 + y2l+1, y2 + x2m+1)) = 1, modulo M∞
n θf , and that we can

take the above (formal) normal form for AΩp
-equivalence with the parameter a as

the modulus. For the other non-s.q.h. map we only know that a2 is a modulus and
that we can take a3 = a4 = 0 (provided a2 6= 0), for ak, k > 4, the corresponding
calculations of LAΩp

· f +Mk+1
n θf seem very tedious.

Finally, a brief remark on our computation of µ(∆f ) for the above two series. We
use the formulas 2δ = µ + r− 1 (relating the δ-invariant, the number of branches r
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and µ of a planar curve-germ) and δ(∆f ) = c(f)+d(f)+δ(Σf ) (where c(f) and d(f)
are the numbers of cusps and double folds, respectively, in a stable perturbation
ft of f , hence δ(∆ft

) = c(f) + d(f)). For f = (x, xy2 + y4 + y2k+1) we obtain
δ(∆f ) = 3 + k + 1 (see Table 1 in [44]), hence µ(∆f ) = 2k + 7 (notice that the
discriminant has r = 2 branches). This contradicts the claim in part (c) of example
1 in [7] that ∆f has an E6k+1 singularity.

Example 5.6. The A-unimodal germs in dimensions (n, 2) lie in the closure of the
orbits of one of the following A-unimodal s.q.h. germs (see [45], and Q is again a
sum of squares in additional variables):

(x, y4 + x3y + ax2y2 + x3y2 + Q), a 6= −3/2

(x, xy + y6 + y8 + ay9 + Q)

(x, xy + y3 + ay2z + z3 + z5 + Q).

For AΩp
-equivalence the corresponding normal forms f are:

(x, y4 + x3y + ax2y2 + bx3y2 + Q)

(x, xy + y6 + ay8 + by9 + cy14 + Q)

(x, xy + y3 + ay2z + z3 + bz5 + Q).

All A-unimodal germs therefore have AΩp
-modality at least two. Also, for the

above f = f0 + h we again have cod(AΩp,e, f) = cod(Ae, f0) = µ∆(f).

5.4. Weakly quasihomogeneous multigerms. Before leaving the subject of
AΩp

-classification we make a final remark. All the results on AΩp
-equivalence

can be easily extended to multigerms f = (f1, . . . , fs) : (Kn, S) → (Kp, Ωp, 0) at
an s-tuple S = {q1, . . . , qs} ⊂ Kn of points in the source. Such an f is AΩp

-

w.q.h. if each component f i = (f i
1, . . . , f

i
p) is AΩp

-w.q.h. as a monogerm for

(possibly different) sets of weights {wi
1, . . . , w

i
n} but of the same weighted degrees

deg f1
j = . . . = deg fs

j = δj , j = 1, . . . , p. Also, if the above weights wi
j are positive

integers then we say that f is q.h. as a multigerm.
Using Mather’s [39] characterization of A-stability of multigerms in terms of

multitransversality to K-orbits of multigerms, it is not hard to see that all A-stable
multigerms are q.h. and hence AΩp

-w.q.h., which implies that the classifications of
A-stable and AΩp

-stable orbits (over C) also agree for multigerms.

6. The foliation of K-orbits by KΩn
- and KΩp

-orbits

In this section we consider the volume-preserving versions of the classification
of ICIS or, in other words, of K-finite maps f : Cn → Cp, n ≥ p. Recall that all
K-simple f and all f whose differential has non-zero rank are w.q.h. for both KΩn

and KΩp
. Hence we will consider K-unimodal germs f of rank 0 and concentrate

on the more interesting group KΩn
(the condition w.q.h. for KΩp

is weaker than
that for KΩn

, hence dimM(KΩn
, f) = 0 implies dimM(KΩp

, f) = 0). The relevant
K-classifications are therefore those in dimensions (n, p) = (3, 2) and (4, 2) (see
[51]) and (2, 2) (see [14]) and (3, 3) (see [15]). Recall that the KΩn

-classification of
hypersurfaces f−1(0) has been settled by the result of Varchenko [48], which gives
dimM(KΩn

, f) = µ(f)− τ(f).
Looking at the lists in [51, 14, 15] we see (using our results) that a K-unimodal

map-germ f is w.q.h. for KΩn
if and only if it is quasihomogeneous. We can

therefore state:
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(1) A K-unimodal map-germ f of rank 0 is KΩn
-unimodal if and only if it is

q.h. and does not lie in the closure of a non-q.h. K-orbit.
(2) For a K-unimodal map-germ f of rank 0 such that f−1(0) defines a ICIS

of positive dimension and of codimension greater than one we have the
following: (i) f is q.h. if and only if M(KΩn

, f) = 0, and (ii) for f non-
w.q.h. the dimension ofM(KΩn

, f) is one or two.
(3) For map-germs f of positive rank we recall that theK- andKΩn

-classifications
agree.

We will now apply our finiteness results for M(KΩn
, f) ∼= Hn(Λ∗(f∗Mp)) to

some examples of non-q.h. (and non-w.q.h.) map-germs f from the classifications
in [51, 14, 15]. These results give upper bounds for dimM(KΩn

, f), and for certain
f some of these upper bound will coincide with the following lower bound (which
is analogous to Lemma 5.1 in the AΩp

case).

Lemma 6.1. Consider a map-germ fu : (Cn, 0) → (Cp, 0) of the form fu = f +
u · M , where f is a quasi-homogeneous germ, u ∈ C and M = Xα · ∂/∂yj /∈
LK · f = LKΩn

· f is a monomial vector of positive weighted degree (with respect
to the weights of f). For a set of weights for which f is weighted homogeneous, let
(θn)0, (glp(On))0 and (θf )0 denote the filtration-0 parts of the relevant modules. If
the kernel of the linear map

γf : (θn)0 ⊕ (glp(On))0 → (θf )0, (a, B) 7→ tf(a)−B · f,

of K-vector spaces is 1-dimensional then u is an KΩn
-modulus of fu. Hence the

dimension of M(KΩn
, fu) is positive.

In our first example we consider positive dimensional complete intersections,
defined by K-finite maps f , that are not hypersurfaces. In all our examples we
have (for positive dimensional) ICIS that dimM(KΩn

, f) ≤ µ(f)− τ(f), and for a
s.q.h. germ f = f0 + h this inequality holds in general. (For such f = f0 + h we
have dimM(KΩn

, f) = dimM(KΩn,e, f) ≤ τ(f0)−τ(f) and τ(f0) = µ(f0) = µ(f).)
The germs f in the example (which are not s.q.h.) show that this inequality can
be strict.

Example 6.2. Consider the K-unimodal space-curves FW1,i from [51], given by

f = (g1, g2) = (xy + z3, xz + y2z2 + y5+i), i > 0.

Writing f = f0 + (0, y5+i), where f0 is q.h. for w = (7, 2, 3), δ = (9, 10) and where
(0, y5+i) has filtration 2i > 0, and applying Lemma 6.1 we have dimM(KΩn

, f) ≥ 1.
The component functions of f are both q.h. (for weights w1 = (1, 2, 1) and w2 =
(7+ i, 2, 3+ i), respectively) and O3/〈∇g1,∇g2〉 ∼= C, hence dimM(KΩn

, f) ≤ 1 by
Corollary 4.12. Therefore dimM(KΩn

, f) = 1 and the family fa = (xy + z3, xz +
y2z2 + ay5+i) parameterizes the KΩn

-orbits inside K · f .
A weaker upper bound for dimM(KΩn

, f) follows from Remark 4.15 (which does
not require that the component functions are w.q.h.): take a projection π onto the
first target coordinate, then π ◦ f = g1 and dimM(KΩn

, f) ≤ µ(g1) = 2.
Finally, notice that dimM(KΩn

, f) = 1 is smaller than the difference of µ(f) =
16+ i and τ(f) = 14+ i, where τ(f) denotes the dimension of T 1

f = NKe ·f . Recall

that for hypersurfaces h−1(0) we have dimM(KΩn
, h) = µ(h) − τ(h) (by [48]), in

all our examples of higher codimensional ICIS g−1(0) we have dimM(KΩn
, g) ≤

µ(g) − τ(g). Notice that for a “suspension” G = (z, g) of g (z an extra variable)



VOLUME PRESERVING SUBGROUPS OF A AND K 27

µ(G)−τ(G) = µ(g)−τ(g), but dG(0) has positive rank hence dimM(KΩn
, G) = 0,

the difference between both sides of the inequality above can therefore be arbitrarily
large. But the examples f = FW1,i show that even in the rank 0 case the Varchenko
formula does not hold for ICIS of codimension greater than 1.

Also notice that the series FW1,i, i > 0, lies in the closure of the K-orbit of the
s.q.h. germ

gλ = (xy + z3, xz + y2z2 + λy5 + y6), λ 6= 0,−1/4,

where µ(gλ) = 16 and τ(gλ) = 15. Omitting the higher filtration y6-term we obtain
type FW1,0 in Wall’s list [51], which is q.h. and µ(FW1,0) = τ(FW1,0) = 16. Notice
that FW1,1 (with µ(F1,1) = 17 and τ(F1,1) = 15) corresponds to the exceptional
parameter λ = 0 in the modular stratum

⋃

λ∈C\{0,−1/4}K · gλ (which seems to be

missing in Wall’s list) and does not lie in the closure of the orbit of FW1,0.

Example 6.3. Consider the K-unimodal equidimensional maps of type hλ,q from
[15], given by

f = fλ := (xz + xy2 + y3, yz, x2 + y3 + λzq) = f0 + (0, 0, y3 + λzq), q > 2.

The initial part f0 is q.h. of type w = (1, 1, 2), δ = (3, 3, 2) and fil(0, 0, y3) = 1,
fil(0, 0, zq) = 2(q − 1) > 1. Applying Lemma 6.1 to f ′ = f0 + (0, 0, ay3) we see
that a is a KΩn

-modulus of f ′ and hence of f , hence dimM(KΩn
, f) ≥ 1. The

component functions of f = (g1, g2, g3) are q.h. for distinct sets of weights, namely
for w1 = (1, 1, 2), any w2 and w3 = (3q, 2q, 6). Now O3/〈∇g1,∇g2,∇g3〉 ∼= C,
so that dimM(KΩn

, f) = 1 (by Corollary 4.12 and the above lower bound – the
upper bound also follows from µ(g1 + g2 + g3) = 1, by Remark 4.15). And for
each fλ = (xz + xy2 + y3, yz, x2 + y3 + λzq), λ ∈ C, the family fλ

a = (xz + xy2 +
y3, yz, x2 + ay3 + λzq) parameterizes the KΩn

-orbits inside K · fλ.

Example 6.4. Finally, consider the K-unimodal equidimensional maps of type
Gk,l,m from [14], given by

f = (g1, g2) = (x2 + yk, xyl + ym) = f0 + (0, ym),

where k 6= 2(m−l) and either k ≤ l, l+1 < m < l+k−1 (case (a)) or l < k < 2l−1,
k < m < 2l (case (b)). As above we check that the coefficient of (0, ym) is a KΩn

-
modulus, hence dimM(KΩn

, f) ≥ 1. And again the gi are q.h. for distinct sets of
weights, but now O2/〈∇g1,∇g2〉 ∼= C{1, y, . . . , yr}, where r = k− 1 in case (a) and
r = l in case (b). Hence 1 ≤ dimM(KΩn

, f) ≤ r.
We can also obtain an upper bound using Remark 4.15: take the generic pro-

jection π onto the first target coordinate, then g1 = π ◦ f and dimM(KΩn
, f) ≤

µ(g1) = k−1. This gives the same upper bound in case (a), but in case (b) we have
l ≤ k − 1.

7. The groups GΩq
6= AΩp

, KΩn
, KΩp

: examples of G-stable maps f of
positive and infinite GΩq

-modality

In this final section we make some remarks on the remaining volume preserving
subgroups GΩq

of A or K. First of all we remark that placing volume forms both
in the source and the target of a map f leads to moduli even for invertible linear
maps f : Cn → Cn (the modulus being the determinant of f).

For function-germs the only relevant groups are those with a volume form to be
preserved in the source, and what is known for these had been described in Section
1.
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For map-germsR-equivalence is too fine already in the absence of a volume form,
hence the remaining cases of interest (not considered in the previous sections) are
the groups AΩn

, LΩp
and CΩp

for pairs of dimensions (n, p), p > 1, for which
singular G-finite (G = A, L or C) map-germs f exist. And we can also discard
those map-germs f that are trivially w.q.h. for the relevant group.

The following (in some sense “simplest” singular but non-w.q.h.) examples in-
dicate that for the above three groups we immediately obtain moduli.

Example 7.1. For AΩn
the fold map f = (x, y2) has infinite modality. We have

LAn
f = K{(xly2k, 0), (0, xly2k+1); l, k ≥ 0, l + k ≥ 1},

where the elements of LAn
f are also known as lowerable vector fields (we write these

source vector fields as vectors). It follows that dimension of Cn/div(LAn
f ), which

is a lower bound for the number of AΩn
-moduli, is infinite for the fold f .

Example 7.2. For LΩp
perhaps the first interesting example of a singular germ

that fails to be trivially w.q.h. is the planar cusp f = (x2, x3). We claim that in this
case Cp/div(LLp

f ) ∼= K{1, y1}, hence the LΩp
-modality of f is two (f is L-simple

and the dimension of the LΩp
-moduli space is two).

Taking coordinates (y1, y2) in the target, we see that the kernel of

LL −→Mnθf , u 7→ u ◦ f

is (as a K-vector space) generated by elements ui
rsl := yr

1y
s
2(y

2l
2 − y3l

1 )∂/∂yi, where
i = 1, 2, r, s ≥ 0 and l ≥ 1. Set Gi

rsl := div(ui
rsl), then

(2l + s + 1)G1
r+1,s,l − (r + 1)G2

r,s+1,l = cy3l+r
1 ys

2

and
(s + 1)G1

r+1,s,l − (3l + r + 1)G2
r,s+1,l = cyr

1y
2l+s
2

where c = −6l2−2l(r+1)−3l(s+1) 6= 0. Finally, we have G1
001 = −3y2

1, G2
001 = 2y2,

G1
011 = −3y2

1y2 and G2
101 = 2y1y2, and the claim follows.

Example 7.3. For CΩp
we first remark that C-finite germs f can only appear for

n ≤ p. As an example for a singular germ f , which fails to be trivially w.q.h., we can
consider the fold f = (x, y2). A quick calculation yields Cn/div(LCp

f ) ∼= K{1, y}.
Hence f has two CΩp

-moduli, which can also be checked by comparing the normal
spaces for C and CΩp

. Notice that NC · f is spanned by (0, y) and (y, 0), whereas
NCΩp

· f is spanned by these two elements together with (x, 0) and (xy, 0).
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