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Abstract. A stable deformation f‘ of a real map-germ f : R",0 — RP 0 is said to be an
M-deformation if all isolated stable (local and multi-local) singularities of its complexification
f& are real. A related notion is that of a good real perturbation f* of f (studied e.g. by Mond
and his coworkers) for which the homology of the image (for n < p) or discriminant (for n > p)
of f' coincides with that of ff. The class of map germs having an M-deformation is, in some
sense, much larger than the one having a good real perturbation. We show that all singular
map-germs of minimal corank (i.e. of corank max(n —p+ 1,1)) and Ac-codimension 1 have an
M-deformation. More generally, there is the question whether all A-simple singular map-germs
of minimal corank have an M-deformation. The answer is “yes” for the following dimension
ranges (n,p): for n > p, p > 2n and p = n+ 1, n # 4. We describe some new techniques for
obtaining these results, which lead to simpler proofs and also to new results in the dimension
rangen +2 <p<2n—1.

1. Introduction In the theory of singularities of analytic mappings, a stable perturba-
tion of an unstable germ plays a similar role to the Milnor fibre in the theory of isolated
hypersurface singularities. The study of special points and the topology of the discrimi-
nant of such perturbations has led to important results of singularity theory in the last
20 years. For complex germs f : C",0 — CP,0, n > p — 1, the discriminant (or image,
for p > n) of a stable perturbation has the homotopy type of a wedge of p — 1—spheres
( see [5],[14]). Over the reals, the topology of the discriminant is more complicated and
few results are known so far. Therefore, a natural question is the existence of a real per-
turbation which shows aspects of the topology of its complexification. One problem is
the existence of real deformations of map-germs from R™ to R?, for which the maximal
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numbers of isolated stable singular points are simultaneously present in the discriminant,
which are called M-deformations. There is also the notion of good real perturbation due
to Marar and Mond, for which the homology of the discriminant of a stable perturbation
of a given germ coincides with that of its complexification. This is analogous to that of
an M-variety Xg in real algebraic geometry for which the sum of the Betti numbers is
the same as the corresponding sum of its complexification Xc.

In [17], the first and second authors show that all A-simple singularities of map-
germs from R™ to RP, where n > p, of minimal corank (i.e. of corank n — p + 1) have
an M-deformation. The proof of this result is based on the property that all A-simple
singularities f of minimal corank can be deformed into a germ of lower codimension
whose 0-stable invariants differ from those of f by at most one — one can then inductively
split off real stable singular points from 0 one by one.

The case n < p is not completely understood yet. Results are known for some pairs
(n,p). For plane curve-germs, the classical result by A’Campo [1] and Gusein-Zade [7]
shows that they always have M-deformations, i.e. deformations with ¢ real double-points
(notice that the d-number is the only O-stable invariant in this case). In this case the
concept of a good real perturbation coincides with that of an M-deformation. As in the
case of plane curves, when p = 2n, the only 0-stable invariant appearing is the number
of double points. In [10], Klotz et al. classify A-simple germs f : R® — R2?" and show
that they have M-deformations and this is equivalent to the existence of a good real
perturbation.

When p = n + 1, we show in [18] that all A-simple corank-1 germs from R™ to R"+1,
where n # 4, have an M-deformation. We also show that in dimensions (4, 5) the open A-
orbit in Aj is A-simple and consists of germs that do not have an M-deformation and also
do not have a good real perturbation. This was the first example of an A-simple singular
germ of minimal corank without an M-deformation (more examples will be constructed
in Section 7 of the present paper). The proofs are based on new techniques for detecting
positive A-modality.

The class of map-germs having an M-deformation is larger than the one having a
good real perturbation in at least three respects. Firstly, for specific pairs of dimensions
(n,p) where both notions have been studied for A-simple singular germs of minimal
corank (except for p = 2n where both notions coincide, see above). For example, for the
pair (2,3) there is only one series of A-simple corank-1 mono-germs having good real
perturbations [12], but all such A-simple corank-1 germs have M-deformations. Secondly,
good real perturbations are known to exist for some real representative of each A.-
codimension 1 orbit of minimal corank map-germs from C™ to CP, see [3], [8], [9] and
[15]. In the present paper we show that all representatives of each A.-codimension 1 orbit
of minimal corank map-germs from R™ to RP have an M-deformation. (Notice that there
are real A.-codimension 1 orbits, e.g. the beak-to-beak map of the plane, without a good
real perturbation). Finally, all ”low multiplicity” germs (to be defined below) have an
M-deformation. For n = p = 2 germs of local multiplicity three have ”low multiplicity”
— and, for example, f = (z,y> + 23y) does not have a good real perturbation.

In this paper, we address the question of the existence of M-deformations, reviewing
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known results and discussing methods and techniques which have recently shown to be
useful to solve them. Using these techniques, we obtain new results on the existence of
M-deformations for A-simple map-germs in dimensions (n,2n — 1) and we show that
all corank-1, A.-codimension 1 map-germs have an M-deformation (complementing the
results in [3] and [9]). The new techniques avoid partial classifications of .A-simple orbits,
and we hope that they allow us to complete the determination of the M-nice dimensions
(n,p) (i-e., those (n, p) for which all A-simple singular germs R™ — RP of minimal corank
have an M-deformation) in forthcoming work.

The following theorem summarizes what is presently known on M-deformations (some
statements are new and some were known before, see the remark following the statement
of the theorem). For standard notation on A- and K-equivalence of map germs (such as
the A.-codimension cod(A., f) and the local multiplicity m(0) of a map-germ f) we
refer the reader to our earlier papers on M-deformations [17, 10, 18].

THEOREM 1.1. A. Let f: R™ 0 — RP 0 be an A-simple, singular map-germ of minimal
corank, then

1. If cod(Ae, f) =1 then f has an M-deformation (also note that cod(Ae, f) =1 and
singular of minimal corank implies A-simple).

2. If ms(0) <n/(p—n+1)+1 (we say that such an f has “low multiplicity”) then
f has an M-deformation.

3. For all pairs of dimensions (n,p) withp <n andp >2n—1 (and anyn > 1) and
forp=n+1,n+#4, all f as above have an M-deformation.

B. Suppose f : R 0 — RP,0, withn +1 < p < 2n — 2, A-simple and singular
of minimal corank and not of “low multiplicity”. Then for dimensions (4,5) and also
for (n,p) = (44 3k,5 + 4k), all k > 1, the open A-orbit in Az (which is not of “low
multiplicity”) does not have an M-deformation.

Remark 1.2. The statements A.1, A.2, A.3 for p =2n — 1 and B for £ > 1 are new. The
remaining results can be found in the following articles: A.3 for n > p is in [17], A.3 for
p=2nisin [1, 7] for n = 1 and in [10] for n > 2 (and note that for p > 2n there are
no 0O-stable invariants, hence all germs have a trivial M-deformation), and finally A.3 for
p=n+1and B for kK =0 are from [18].

The contents of the remaining sections of the present paper are as follows (all singular
map-germs f : R™ 0 — RP, 0 considered here will be of minimal corank, i.e. of corank 1
for n < p or of corank n — p+ 1 for n > p):

e O-stable invariants and M-deformations
e All A.-codimension-1 mono-germs have an M-deformation

e All mono-germs in the K-class of Ax, k <n/(p —n + 1) have an M-deformation

Counting arguments for detecting positive A-modality

New results on the existence of M-deformations for .A-simple germs: the dimensions
(n,p) = (n,2n —1)

A-simple, singular germs of minimal corank without an M-deformation
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2. O-stable invariants and M-deformations Let f : K", 0 — KP 0 be an A-simple,
singular map-germ of minimal corank, i.e. of corank 1 (for p > n) or n — p + 1 (for
n > p). In fact, for n > p, any A-simple germ f of corank n —p+1 is A-equivalent to the
“suspension” of some A-simple equidimensional corank-1 germ f , and the discriminants
of f and f are diffeomorphic. We will therefore consider corank-1 germs in dimensions
(n,p), p > n, of the (pre-normal) form

fiK"0—=KP0, (z,9) (2,9n(2,9);-, gp(T,Y)).
The K-class of such an f is Ay, k > 0, if
mys(0) :=dimg O,/ f*Mp =k + 1.
The K-type of an s-germ f = (f1,..., fs) : K*, S — KP, ¢, where

S=A{(z,y), .-, (@ys)t = a= filz,y1) = ... = fo(z,ys),
whose ith component germ f; is of type Ay,, will be denoted by Ag(sm) = A(ky,... k)

where . .
> ki=m=biki+ Y biki,.
i=1 =2

Here k(s,m) denotes a “partition” of m with s summands k; > 0, and for r = 1 the
sum on the RHS is zero (the RHS says that k; appears by times in the partition, and
so on). For equidimensional germs we only consider singular component germs of type
A>1, but for p > n we also have to consider immersive Ay components. Notice, that for
corank-1 maps f we can embed the space of s-fold points in the source in K"**~1 (with
coordinates (,y1,...,¥s)). On A m) C K"+5=1 there acts a subgroup Sk(s,m), of order
Cr(s,m) = 1 1;—1(bi!), of the permutation group S that preserves the partition k(s,m) of
m.

The closures of the sets Ay m) C K"+5~1 in the source of f are the O-sets of maps
Gk(s,m), which are defined as follows. For D := p—n+1and £ > m+slet Gy(s m) := wojtf
be the composition

Kn+5717 0 Jél) JSE i) K(erSfl)D, O7

where ¢~ 1(0) defines the closure of the set of Ap(s,m) points in the space JE of (-jets of
s-germs (including the diagonal). This set is a smooth submanifold. Let f* : flk(sﬁm) =
G;(ls m) (0) — KP be the restriction of the map K*+s~! — K"~ 15D given by

(xuylu"wys) e (X7Yn,17'"7Yn757"'7}/;7,17"'7}/;775)7 X =, Y;,] = gi(xuyj)7

to the main diagonal ;1 = ... =Y, ¢ =n,...,p, in K"~ 145D which is isomorphic
to KP. The map f* (not to be confused with a deformation f* of f with parameter t)
has degree cy(s,m) and its image is the flk(sﬁm) stratum in the target of f. (Also notice
that f® = f om, where 7 is the restriction of the projection (z,y1,...,ys) — (x,y1) to
Ak(s,m) € K"~ which has degree c¢y(s,m)/b1, and the restriction of f to the image of
7 has degree b;.)

By a result of Mather, f is stable if and only if, for all k(s,m), j¢f is transverse to
the closure of Ay (s m) (or, equivalently, the maps G'i(s,m) are submersions). The relation
between the sets Aj(s,,) and the A-finiteness of f has been studied in [11] for p > n.
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A map-germ f is A-finite if and only if the maps Gy (s,m) are K-finite (i.e. they are
submersive outside 0, equivalently the set-germs G];(lsﬂn) (0) are complete intersections
with isolated singularity at 0.) In fact, for equidimensional germs f the KC-finiteness of
the Gy(s,m) for partitions k(s,m) with summands k; € {1,2} is already sufficient for
the A-finiteness of f (see [16]), and for p > n one can restrict to “partitions” k(s,m)
consisting of sequences of 0s (see [11]).

The sets Ap(s,m) C K"*s=1 are of dimension 0 for n +s —1 = (m + s — 1)D. For
D =1 (i.e. p = n) this condition holds for all partitions k(s,n) of n, for D > 1 (p > n)
it holds for all “partitions” k(s,m) (possibly with 0 summands) with s = iD + 1 — n,
m =1i(1—D)+n, withi € [n/D,n/(D—1)] a positive integer. For each k(s,m) satisfying
the above condition we define the following “0-stable invariant” of f:

Tk(s,m)(f) = C;;(lsym)mes,m) (0).

Let A(f) denote the image (for n < p) or the discriminant (for n > p) of f. For K = C
any stable deformation f* of f has precisely (s, (f) points of type Ay (s m) in A(f*).
For K = R the number rl}f(&m) (f*) of real Ay, points in A(f*) depends on the choice
of deformation f?, obviously Tl}f(sym) (f") < Ti(s,m) (f). We say that a real deformation f*
is an M-deformation of f if rf(sﬁm) (f*) = ri(s,m)(f) for all k(s,m) satisfying the condition
n+s—1=(m+s—1)D. Notice that for D > n + 1 (i.e. p > 2n) there are no 0-stable
invariants, so that any deformation is trivially an M-deformation.

In the study of M-deformations we have to relate real deformations f! of f to the
corresponding deformations Gz(s)m) of the maps Gy (s m). The maps Gy (s m) are defined
by iteration, see below (some general properties of the Gy ) for corank-1 maps in
dimensions (n, p), for p > n, and their relation to alternative ways — see e.g. [6, 11, 13] — of
defining the sets Ak(s)m) are described in [16]). Replacing the coordinates (z,y1,...,ys) €
K"*+s=1 (in the space of s-fold points in the source) by (x,y1,€2,...,€s) = (2, y1,y2 —
Y1,---,Ys — Ys—1), and setting for r =n,n+1,...,p

gf‘?l = 6197‘/8y17 7/ Z 17

we define by iteration for j =1,...,s—1
0 —kj—1 i i (0 ; .
95,3?+1 = Z gii‘)fyﬂj /al, 952‘+1 = 8195)]?“/86;“, i>1
a>k;j+1
The component functions G1,...,Gunys—1)p of Gis,m) are then given for r = n,n +
1,...,p by
1 k 0 k) /-
g g g0 g (=2,

(here { gﬁll) e 95?1) } denotes the empty set).

For A.-codimension-1 germs, and for low multiplicity germs (i.e. of multiplicity at
most (n/D)+1), we only have to consider s = 1,2, but we require explicit expressions for
the component functions of Gy(s,m)- The case s = 1 is trivial, hence consider s = 2 and
take coordinates (x,y,€) := (2,y1,y2 — y1) € K"T1. The maps G'(2,m) associated with a
corank-1 map f = (z,gn,...,gp) have (m+ 1)(p —n + 1) = n + 1 component functions,
namely m + 1 component functions Gj 1, ..., Gim+1 for each g;.
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Each term @(z)y” in g; generates a term (x)he(y,€) in G4, and for k(2,m) =
(k—1—1,1) with I =0,...,[(k—1)/2] the h, are given by:

he=r%""% a=1,2,....k—1—1,

i(i—k+Db
hi—i4p = Z W.i'ﬂyrﬂej_k”_b, b=0,1,...,1
j>k—1+b J:
withn? =1and n® =n(n—1)...(n —s+ 1), as usual.
Notice that for r =k + 1 and k + 2
b =1 ((k+ )y + (I +1)e)
and ) )
hy, = l!(§(kz +1)(k+2)y* + (k+2)(1 + L)ye + SU+DI+ 2)e?),

respectively. The coordinate change (y,€) — (y, € — %y) reduces these equations to

MWk+1)(k-=1)
20+1)
where €L can be removed using the first equation. Notice that the coefficients of € and

y? are positive for all relevant k, . Also notice that for » = k we get hy, = I! > 0.

(I+1)le and y? + eL(y, ),

Ezxample 2.1. Let us apply this to the following 1-parameter deformation
fr= (" oy + oy T iy ey 0 g, ),
where k = (n+1)/(p—n+1) and g; = x;,y + ... + x;,y* such that all the x; appearing

in ft are distinct. Then f! induces maps Gfk_l_u) ~r (€, %jﬁ + I!t). Hence,
forall 1 =0,...,[(k—1)/2], we get for t <0 two real A;_;_;;) points in the source (for

k — 1 even this gives one real A((x—1)/2,(k—1)/2) Point in the target). We will see in the
next section that fy is a pre-normal form for the A-orbit of lowest codimension in Ag
(which has A.-codimension at least 1). Notice that any deformation of f° that preserves
its KC-type Ay induces KC-trivial deformations of the maps G?k_l_l)l). It follows that the
germs in A of minimal A-codimension have an M-deformation.

3. All A.-codimension-1 mono-germs have an M-deformation In this section we
will show that all singular 4.-codimension-1 germs R™, 0 — RP, 0 of minimal corank have
an M-deformation. This result is best possible, because for dimensions (4,5) there is a
corank-1 map-germ of A.-codimension 2 that fails to have an M-deformation [18]. For
n > p the claim follows from the results in [17] (because all the rank p — 1 germs of
positive A-modality have A.-codimension greater than one).

Hence consider corank-1 germs in dimensions (n,p), p > n. Set D :=p—-n+1> 2
(for p > n) and consider a germ f in Ay of A.-codimension at most 1, then we have the
conditions:

(Cs) m+s<k+1, kD<n+1, (m+s—-1)D=n+s—1.
The first and third condition are from [16] (rj(s,m)(f) = 0 for f of multiplicity k& +1 <

m+ s, and for (m +s—1)D = n+s—1 the Ay, ) points in the source of an A-finite f
are isolated). And the second condition says that the codimension of the K-orbit of Ay
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is at most n + 1 — notice that KC-orbits of codimension greater than n + 1 cannot contain
germs f of A.-codimension less than two.

For s = 1 we deduce from (Cy) that m = k, mD = n and the dimension range
(n,p) = (rm, (m+ 1)r — 1), for all m > 1,r > 2. Notice that m < k (first condition), and
putting k = m+-c for some non-negative integer ¢ we get kD = mD~+cD = n+cD > n+2c.
This implies ¢ = 0 (for otherwise kD > n + 1, contradicting the second condition).

For s = 2 we obtain in the same way from (C3) that k =m+ 1, (m+1)D =n+1
and (n,p) = (r(m+1) — 1,r(m +2) — 2), for all m > 0,7 > 2.

For s > 3 the conditions in (C;) cannot hold simultaneously — for k > m+2 we obtain
kD > (m+2)D >n+2 >n+1, contradicting the second condition.

Hence we only have to consider s = 1 and 2 further, and notice that the dimension
ranges (n,p) are disjoint for s = 1 and s = 2. Thus for the (n,p) listed in case s = 1
only the invariant r(,,)(f) can be positive for f of A.-codimension 1, for the (n,p) listed
in case s = 2 only the invariants 7(,,—;;y(f), I = 0,...,[m/2], can be positive for f of
Ac-codimension 1 and for all other (n,p), p > n, the A.-codimension-1 germs have no
positive O-stable invariants (in fact, one also easily checks that for p > 2n there are no
germs f of A.-codimension 1).

For s = 1 (and the associated m, k, (n, p) specified above) we can take the pre-normal
form

f=@y"  +Pi@)y+...+ P ()Y gnsts o 9),s
with g; = P, (z)y + ... + Py, (2)y* + y**2R;, R; € C,,. Then Gy ~x (y, P(z)) with
P=(P,...,P,_1) : R"10 — R"1 0 the map = — P(z) with component functions
the above P;. A deformation P! of P lifts to a deformation f? of f, hence we can argue
as in [17] and conclude that the K-simplicity of Gy (and hence of P) is equivalent to
the A-simplicity of f, and that the K-simplicity of Gy implies that we can split off Ay
points from f one by one. (A word on terminology: we have a map f* — G’Ek) and in
the above situation we may say that sz) ~rk (y, Pt) "lifts” over this map.) Hence an
A-simple f (and A.-codimension-1 corank-1 germs are A-simple) has an M-deformation.
But we can be more precise: if f (as in the above pre-normal form) has A.-codimension
1 then the associated P (and hence G ) must be of type Ay, and hence ) (f) = 2. To
see this, note that Ay has (for kK = m and p—n+ 1 = r) codimension rm = n. The open
A-orbit in Ay has A-codimension n and is stable, and the associated P (and G (y)) is a
diffeomorphism. The P associated with an A-orbit in Ax of A.-codimension 1 must be
of type A;. Notice: the f with such a P must be unstable, and any f with a P of type
Ay or worse must be of A.-codimension greater than 1, because we can deform such a
P to A;. Such a deformation of P lifts to a deformation of the associated f and hence
decreases the 7(;y number of f — this means that the A.-codimension of f decreases and
is still positive, hence it must be greater than 1.
For s = 2 we refer to the pre-normal form in the example 2.1 in Section 2.
Hence we can conclude

PRrROPOSITION 3.1 Let f : R*,0 — RP 0, p > n, be a map-germ of corank 1 and A.-
codimension 1. Then f has an M-deformation and furthermore the invariants of f satisfy
the following conditions: for
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(n,p) = (rm,r(m +1) = 1), m > 1, r > 2: my(0) = m+ 1 and v, (f) = 2, and for

(n,p) = (r(m+1)=1Lr(m+2)—2), m>0,r>2:ms0) =m+2, (i (f) =2
for 0 <1 <m/2 and 7(m/2,m/2)(f) = 1 for even m.

For dimensions (n,p) outside the ranges listed above there are no 0-stable invariants
T(s,m)(f) or these are equal to zero for f as above (or there are no Ac-codimension 1
germs, as for p > 2n).

Remark 3.2. (i) For general (n,p) the above result cannot be improved: for (n,p) = (4,5)
there is a corank-1 germ of A.-codimension 2 without an M-deformation [18].

(ii) Tt follows from the results in [17] that all singular map-germs f : R™,0 — RP?, 0,
n > p, of minimal corank n — p + 1 and A.-codimension 1 have an M-deformation.
Furthermore, the O-stable invariants of such f are all zero for m(0) < p, otherwise
rp)(f) = 2 (for f with ms(0) = p+ 1) and 7, (f) = 2, rp—1.y(f) =2 (0 <1 < p) and
T(p/2.p/2)(f) = 1, provided p is even, (for f with my(0) = p + 2) are the only non zero
0-stable invariants.

4. Germs of low multiplicity and M-deformations The argument for s = 1 (where
k(p—n+1) = n) before the statement of Proposition 3.1, which implies that for k = -—-
the deformations of G lift to deformations of the corresponding maps f in the K-orbit
Ay, yields the following

PROPOSITION 4.1 All A-simple corank-1 germs f : R™",0 — RP, 0, p > n, in Ay, with

k< ]#H have an M-deformation.

Notice that for k& < ]#H or n not a multiple of p — n + 1 there are no 0-stable
invariants. Otherwise, for k = =1, 7(&y(f) is the only O-stable invariant of f. In the
latter case if f is A-simple then Gy is K-simple (using the liftability of deformations
of Gy as in [17]). And the K-simple real equidimensional germs G can be deformed
to give mg,, (0) = r(x)(f) real points in some fibre near 0 (by noticing that these real
points can be split off 0 one by one [17]).

Ezxample 4.2. The proposition implies the existence of M-deformations in the following
three examples (the first two recover results from [17] and [18], and the third is a new
result). (i) For p = n all A-simple germs f in A(,) have an M-deformation with 7, (f)
real A,-points. (ii) For p = n + 1 and n even all A-simple germs f in A,/ have an
M-deformation with r(,/2)(f) real A, ,-points. (iii) And for p = 2n — 1 all A-simple
germs f in A(;) have an M-deformation with r(1)(f) real A;-points (i.e. cross-caps).

For map-germs f in Ay, with k> ]#H, of higher multiplicity the invariants 7y, (s m) (f)
with s > 1 can be positive. For example, equidimensional map-germs have 0-stable in-
variants 7,5 ) (f), for all partitions k(s,n) of n with s summands. But 4, (f) = 0 for
germs f of multiplicity m(0) < n+s, and for n > 3 any A-simple germ f has multiplicity
at most n + 2. Hence the only non-zero invariants ry(s ) (f) are those with s =1, 2.

For germs in dimensions (n, p) with p > n the following 0-stable invariants 745 m) (f)

can appear. Set D :=p—n+1>2 (for p > n), the conditions
(m+s—1)D=n+s—-1, s>1, m>0,
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_n_

p— there are O-stable invariants

imply that for any positive integer i with § < i <
Tk(s,m) (f) with

s=iD+1—n and m=1i(l—D)+n.

Furthermore, 7y (5,)(f) = 0 for all germs f of multiplicity ms(0) < m +s = i + 1.
Notice that if ¢ = n/D is an integer then s = 1 and m = n/D — this corresponds to
the low multiplicity case k = n/D in Proposition 4.1 above. In general, as ¢ increases
from ig := [n/D] to iy, := |n/(D —1)] the corresponding s (respectively m) increase in
steps of D (respectively decrease in steps of D — 1). If i = n/(D — 1) is an integer then
s =p/(D —1) and m = 0, and the corresponding invariant rj(, ,,)(f) (corresponding to
p/(D — 1)-fold points) is zero for all f of multiplicity less than m + s = p/(D — 1). The
higher i (with & < i < z%5) often require multiplicities m;(0) > ¢ + 1 that A-simple
germs f cannot have, this can be shown with the techniques described in the next section.

5. Detecting positive .4-modality In order to show that the A-simple germs in di-
mensions (n, p) have an M-deformation we need criteria for detecting positive A-modality.
For n > p this is done by partially classifying A-orbits of a certain multiplicity (see [17]),
using the techniques described in Section 5.1 below. In [18] a new counting technique
for detecting positive A-modality of corank-1 germs in dimensions (n,n + 1) is used,
which is more efficient and avoids partial classifications. In Section 5.2 we describe this
counting technique for corank-1 germs in dimensions (n,p), p > n, and illustrate it by
some examples. Example 5.1 describes the technique, in its most basic form, for certain
germs in dimensions (n,n + 1). Example 5.2 shows how the arguments in [17] in the
equidimensional case n = p (based on partial classifications) can be replaced by much
shorter counting arguments. Example 5.3 illustrates the counting technique for a germ
with integer weights > 2 (in practise, we so far — in ruling out germs of positive modality
— only had to consider germs with one weight equal to 1, but the counting technique is not
limited to this case). Finally, for large p — n, modality often appears already at filtration
0 — Example 5.4 shows how modality at filtration 0 can be detected with the counting
technique for two germs in dimensions (n,2n) (namely for the “bordering germs” (B.1)
and (B.2) in the classification of .A-simple orbits in dimensions (n,2n), n > 2, in [10]). In
fact, the counting argument is applied in dimensions (2,4) and the positive A-modality
for the corresponding germs in dimensions (n,2n), n > 3, can then be deduced using a
simple trick.

5.1. Necessary and sufficient conditions for positive A-modality Here the strategy is the
following. First, we rule out certain K-orbits that cannot contain any .A-simple orbit.
This uses the necessary and sufficient condition for an A-orbit to be open in its K-orbit
n [19]. Second, for the remaining K-orbits one carries out a partial classification (ruling
out orbits of positive A-modality using Mather’s lemma).

5.2. Sufficient conditions: the counting technique Here we use certain sufficient conditions
for positive A-modality that are based on counting arguments in A-tangent spaces filtered
by weighted degrees.

For map-germs f : K”,0 — KP, 0, p > n, of corank 1 we use source coordinates (z,y) =
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(1,...,2n-1,y) such that f(z,y) = (z,gn(z,y),...,9p(z,y)), and target coordinates
(X1,...,Xp). In describing elements of T'A - f we sometimes use the shorter notation e;
for the target and source vector fields 0/0X; and 9/0x; (where z,, = y).

Let f: K™ 0 — KP,0 be weighted-homogeneous with weights w = (w1,...,w,) and
weighted degrees § = (d1,...,9p), and let (0,)s, (0,)s and (6f)s denote the filtration
(more precisely, weighted degree) s parts of the modules of source-, target-vector fields
and vector fields along f, respectively. (Recall that the monomial vector fields u-e; € 6,,,
v-e; € 0, and m-e; € 0y, with exponent vectors o, a, and oy, have filtration s if
(O, W) — w;, (Qy,0) — §; and (o, w) — 0; are equal to s.) For integers s > 0 consider the
linear maps

Vs(f) 2 (On)s & (Op)s — (0)s,  (a,b) = tf(a) —wf(b),
of K-vector spaces. Notice that (Ey, Es), where E,, := Y w;z; - ¢; (where z,, = y) and
Es = 73,;6;X;-e; are the Euler vector fields in source and target, is in the kernel of yo(f),
and we call e(f) := v (f)(Ew, Es5) the Euler relation. From the C,-module generated by
e(f) we get further relations in the higher filtration-s parts of T\A - f (notice: e(f) = 0
implies v, (f)(f* X% - Ey, X*E5) = 0 for target monomials X* with («,d) = s).

Now let H and H!_, denote the vector spaces (possibly 0-dimensional) generated

by monomials in x,y and in x, respectively, of weighted degree r, then we can write
[r/wn]
(Of)s =H™ @ ..o HY, H) = €D y'H, "
i=0

And (since w; = 0;, i < n)
(0,)s = HSF0 @ . @ H3Von—1 @ HFwn,

Let K, denote the vector space generated by target monomials X< of weighted degree r
and set B" := {X* € K} : ap + ...+ ap > 0}, then we have the decomposition

(0p)s =Ko oK™, K, ~H ,&B

(remark: substitute z1,...,2,-1 in H:_; by X1,...,X,_1). And we can decompose

P
B~ P [ xem, 3=
O<Zf:n a;6; <r i=n
Finally, note that we have a vector space e(f) K, of relations at filtration s from the Euler
relation.

The counting arguments involve comparing the source and target dimensions of the
maps 7;(f) (and taking into account the relations coming from e(f) k). More precisely,
we have that

cs = dim(0y)s — dim(6,)s © (0p)s + dim e(f) K,

is a lower bound for the dimension of the cokernel of the linear map v5(f), and hence for
the dimension of a complete transversal of f at filtration s (see [2] for the definition of
a complete transversal). Using the above decompositions for the vector spaces appearing
on the RHS of the formula for ¢; we can cancel most of the direct summands (isomorphic
to H' := H! _, for some i) and count only the dimensions of the few remaining terms.
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Notice that we can cancel all the H* summands between the first n — 1 components of
(65)s and of (6,,)s — hence it is enough to count the H* in the 8/0X ;-components, j > n,
of (8y)s and in the d/dy-component of (6,)s (and, of course, in (6,)s and e(f)K;).

The most basic form of the counting argument is then as follows. Suppose the kernel
of v(f) is 1-dimensional and therefore generated by (FE,, Es), and that ¢, > 2, for
some s > 0, then dim(f¢)s/imys(f) > 2 (so that the filtration-s complete transversal
of f is at least 2-dimensional). Then g := f + ¢ymq + cama + ... (where the monomial
vectors m; generate the filtration-s complete transversal) is at least uni-modal, because
the filtration-0 part of any generator tg(a) —wg(b), (a,b) € 0, ® 0, relating the m,; must
lie in the kernel of vo(f), which is 1-dimensional.

In order to apply this counting argument we typically find a germ f as above — that is,
f weighted homogeneous and with essentially unique weights (i.e. unique up to common
multiplicative factor) such that vo(f) has 1-dimensional kernel generated by (Ey, Fs) —
which is “best possible” within its K-orbit in the sense that ~vo(f) is surjective (so that
the F°A-orbit of f is open in its FOK-orbit, where F'* denotes the filtration on CXP
induced by the weights and weighted degrees of f).

Ezample 5.1. The following example from [18] uses the counting argument in its most
basic form (described above). The map-germ f : K2+1, 0 — K242 0, where | > 2, defined
by

flx,y) = ($ayl+2 +oy+ .oy my o ryy T oyt 4 yl+3)

is weighted homogeneous for the weights w = (I +1,1,...,2,1+ 2,14+ 1,...,4,2,1) with
weighted degree 6 = (I + 1,1,...,2,1+ 2,14+ 1,...,4,2,1+ 2,1+ 3). The map o(f) is
surjective with 1-dimensional kernel generated by (E.,, Es), and cancelling H® direct
summands we find that ¢; = dim H* — 3dim H® =5 — 3 (for [ > 2) and ¢; = dim H* —
2dim HY = 4 — 2 (for [ = 2). Hence we have at least one modulus at filtration 1.

Example 5.2. Detecting orbits of positive A-modality in the case n = p. In the argument
in [17] that all equidimensional corank-1 germs have an M-deformation there are three
lemmas, whose proofs occupy about 6 pages: Lemma 4.5 that shows that there are no
A-simple orbits of multiplicity > n + 3 (for any n > 3) and Lemmas 4.9 and 4.10 which
yield pre-normal forms for the A-simple germs of multiplicity n + 2. Using the counting
argument we can give short alternative proofs of these lemmas (see below).

First, consider corank-1 germs of multiplicity n + 3, n > 3. The map-germ f =
(2, y" "3 + 21y + ... + 2 _1y" 1) is weighted homogeneous for the weights n + 2,n +
1,...,4,1 with weighted degrees n + 2,n+ 1,...,4,n + 3. And ~o(f) is surjective with
1-dimensional kernel generated by (E,,, Es). Then (always after cancelling H* summands
and omitting 0-dimensional H's) ¢; = dim H* — dim H° = 1 — 1 and in fact y;(f) is an
isomorphism. Next ¢ = dim H* 4+ dim H® — dim H® = 1+ 1 — 1 (for any n > 3), while
c3 = dim H® +dim H% —dim H® = 1+1—1 (for n > 4) and ¢3 = dim H®> = 1 (for n = 3).
It follows that (for any n > 3) we either have dim(6s)2/im~2(f) > 1 (then there is a
modulus at filtration 2, as in the basic argument above) or else dim(f )2/ im~2(f) =1 so
that v2(f) has 0 kernel and the complete filtration-2 transversal is generated by a single
monomial vector m. In the latter case the complete filtration-3 transversals of f and
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f+2m, A € K, coincide (because kerv1(f) = 0) and dim(6s)2/im~y2(f) > 1 then implies
that there is a modulus at filtration 3. Notice that this argument implies Lemma 4.5 in
[17], because the A-orbits in A,, 12 of lowest codimension have filtration-0 part equivalent
to f and contain all A-orbits in Ag, k& > n + 2, in their closures.

Next, consider germs of multiplicity n + 2. In Lemma 4.9 of [17] map-germs f; have
been defined whose filtration-0 parts are given by

gi = (r,y" P v my+ . oy T L y™),

where j = 1,...,n, and it was shown that all f; with j < n —2 are non-simple. It is easy
to see that any f; with j < n—2 can be deformed to f,,—2, hence it is enough to apply the
counting technique to g,_o (alternatively, we could apply the counting technique to g,
for all j <mn —2). With the obvious weights and weighted degrees for f := g,,_o we have
that o (f) is surjective with 1-dimensional kernel generated by (E,,, Es). Furthermore we
find that ¢; = dim H° —dim H° =2—1 and ¢, = dim H2+dim A —dim H* =1+3—1,
hence (by the same reasoning as above) we see that any germ f,,_o with filtration-0 part
equal to f = g,_o is non-simple.

Finally, Lemma 4.10 in [17] gives explicit normal forms for any A-simple germ of
type fn and f,_1 — but the invariants (and the existence of an M-deformation) of germs
of type f, and (for odd n) of type f,_1 are determined by their filtration-0 parts gy,
and g,_1. For showing the existence of an M-deformation the explicit normal forms are
therefore not required in these cases. So it remains to consider f,_; for even n — in
Lemma 4.10 this is done by showing that the series fk = gn_1 + (0,2F_ y"1) gives
the complete classification of A-orbits with filtration-0 part g,_1. Notice that only one
invariant depends on k, namely 7(, /2.5 /2)( fk) = k, the others are already determined by
the initial part g,—1. One can replace the proof of Lemma 4.10 by a shorter argument
analogous to the proof of part (iv) of Proposition 4.6 in [18]. Briefly, this argument uses
the maps G(,,/2,n/2) associated with g, 1 and fr (for the former G, /2,5/2) ~x (2, €2,0)
and for the latter G(,,/2,n/2) ~x (T, €2,y?*)) together with the possible outcomes of the
counting argument (without actually carrying it out). The conclusion then is that either
we get the series f (whose members have M-deformations, and by the results of [17]
this is actually the case) or else the A-orbits over the filtration-0 orbit of g, are all
non-simple.

Ezxample 5.3. Next, we consider an example of a corank-1 germ whose integer weights
are all greater than 1 (allowing rational weights we could always assume that w(y) = 1,
of course). Such examples are difficult to find in the existing classifications of germs of
A-modality zero or one, so we construct an example in dimensions (2,2) (of modality
at least two). The map-germ f = (x, 23y + 3°) is weighted homogeneous for the weights
w = (4, 3) and weighted degrees § = (4,15). Then ~o(f) is surjective with 1-dimensional
kernel generated by (E.,,, Es) and ¢; = 0, in fact v1(f) is an isomorphism. Finally, ¢y =
dim H® =1 and c3 = dim H'2 = 1, so we get at least one modulus at filtration 2 or 3. In
fact, calculating the “best possible” F3 A-orbit over f we obtain (z, 23y +y° + 22y +ay®),
where a is a modulus. This confirms the “counting result”.

Example 5.4. In the first three examples, positive A-modality appears in positive filtration
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— this is typical for germs in dimensions (n, p) with small p—n. For large p—n we frequently
have positive .A-modality already in filtration zero. In the classification of .A-simple germs
in dimensions (n,2n), n > 2, there are non-simple bordering germs (B.1) to (B.8) whose
orbits contain together all non-simple germs in their closures, and these bordering germs
often have moduli in filtration 0 (see [10]). The simplest examples are the map-germs
(B.1) and (B.2) from [10] for n = 2, given by

fo=(z.y* 2%y + 4% 2y’ +ay’) and (2,9, 2%y + 2y’ y° + az'y).
The first is quasi-homogeneous for the weights w = (2,1) with weighted degrees § =
(2,2,5,7). We find that ¢y = dim H® + 2dim H* — 2dim H° = 1, hence we have at least
one modulus at filtration zero. The second is homogeneous with degrees 6 = (1, 2,4, 5). We
find that ¢y = dim H* 4 dim H3 + dim H? — dim H' — dim H° = 1, hence we have at least
one modulus at filtration zero. The above map-germs in dimensions (2,4) “correspond”
to map-germs in dimensions (n,2n) for any n > 3, and these have positive A-modality
as well. For example, f, corresponds for each n > 3 to exactly one map-germ

fo=(fa(z1,9y) 22, . ., Tpe1, T2Y, + + o, Te1Y)
(in the sense that the normal spaces NA. - f, and NA, - f, are isomorphic, see [10]).
That the parameter a is not only a modulus for f, but also for fa can be checked by
simply giving the new extra variables a sufficiently high weight. Assigning z;, i > 2,
the weight 8, the new extra component functions have weighted degrees 8 and 9. And
the filtration-0 vector fields in source and target that involve the new source and target
variables contribute nothing to the 0, subspace of 0 .

6. M-deformations of A-simple germs from R" to R>"~!, n > 3 In Example 4.2
(iil), Section 4 we have already seen that all A-simple multiplicity 2 germs f : R",0 —
R2"=1 0 of corank 1, have an M-deformation. In this section we deal with germs of
multiplicity greater than 2.

LEMMA 6.1 Let f: K", 0 — K210, n > 3, of corank 1.
(1) If m¢(0) = 3, the A-orbit of f has the pre-normal form

f=@ a1y +a(@y), ..., en-2y + Gu2(2,y), aZpn-1y + Gn1(2,y), @ (2, y)), @ € M3,

or it lies in the closure of some A-orbit of the type

f/ = (xu 1y + ql(xay)v sy Tp—3Y + qn—?)(‘ru y)7 qn—?(xay)u Qn—l(xay)u Qn(l'ay))u q; € Mi

and the latter are non-simple.
(11) If m¢(0) > 4, then f is non-simple.

Proof. The normal forms in (i) follow easily using the complete transversal method.
Applying Mather’s Lemma one can see that f’ is non-simple.

To prove (ii) we now use the weighted version of the complete transversal: given
weights w=(2,...,2,1), and weighted degree 6 =(2,...,2,3,...,3,4), we find that the
“best possible” F°A-orbit of multiplicity 4 is fo= (2, 71Y, ..., Tn_1Y, 219> + y*).

When n = 2 it follows from Mond’s classification ([13]) that (z1,z1y, z19? + v*) is
adjacent to (w1, 11y, v1y? + y* + ay®), which is non-simple (a is a modulus). The general
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case follows similarly since fy is adjacent to f, = (v, 21y, ...,Tn_1y, 219% + y* + ay®),
which is also non-simple. =

Remark 6.2. Here is a quick alternative proof of (ii). Consider the weighted homogeneous
germ f = (21, v1y+ay®, v1y%+by*) which for weights w = (2, 1) and weighted degrees § =
(2,3,4) lies in the is “best possible” F°A-orbit. By the counting argument ¢y = dim H? =
1, hence we have at least one modulus at filtration 0 (in fact, in Sec. 4.2.2 of [13] it is
shown by heavy calculations that the unimodal germ (21, 71y +v%, v19y% + cy?) yields the
lowest codimension orbit over the 3-jet (1, 71y +y3, 219?)). Now we argue as in Example
5.4 that the moduli of f are also moduli of F := (f, z2, 22y, ..., Tn—1,Zn_1y) (just give
the x;, 4 > 1, weight > 4), and finally notice that the orbit of (z, z1y, ..., Tn_1y, T1y>+y*)
lies in the closure of that of F. Also note that for a = 0 the f in part (i) of the lemma
lies in the closure of the orbit of F, hence f is non-simple for a = 0.

PROPOSITION 6.3 All A-simple germs f : R",0 — R*~1 0 of corank 1 have an M-
deformation.

Proof. Tt follows from the classification in [13] that all A-simple corank-1 germs in di-
mensions (2,3) have an M-deformation (see the concluding remarks in [17]). Then, we
can consider n > 3. For pairs (n,2n — 1), n > 3, it follows from section 4 that r(f) is
the only O-stable invariant.

As we saw in Lemma 6.1, if f is A-simple and m(0) > 2, then m;(0)=3 and its pre-

normal form is f. The map-germ G (1) is defined by G(1)(z,y) = (:vl—i—%—‘;l (x,y)y...,azp_1+

Oqn— 9qn
=5 (@,y), 52 (2,y).

Suppose a # 0. Then G(y) is an Ay, singularity and so we can apply Lemma 4.8 of [17]
to find a germ G’ of lower K-codimension, to which Gy is K-adjacent to, such that
ma,, (0) —mg:(0) < 1. Write G'(z,y) = (G1(=,y),...,G,(2,y)). Of course G’ is also an
A; singularity and we can suppose that rank(G},..., Gl _;) = n — 1. Write g, (z,y) =
an(0,y) + 211 (2, y) + -+ + Tp_1Gn—1(z,y), for some ¢, ¢ = 1,...,n — 1, and define
4,(0,y) = [ G(0,y)dy and g(z,y) = (z,21y+q1(2,Y), -, aZp—1y+qn-1(2,y), ¢, (0, y) +
r1G1(2,y)+ -+ 2n—1Gn-1(2,y)). The germ g is A-finite and adjacent to f. Also 71y (f)—
7(1)(9) < 1. Therefore we can split off A;-points (i.e. cross-caps) from f one by one. m

Notice that f also has an M-deformation for a = 0 (by the previous remark such a
f is non-simple). In this case G (1) has corank 2 and is therefore K-equivalent to a germ
F(z,y) = (#1,...,Zn—2, Fo_1(z,y), F(x,y)). Let (H,h) be the K-equivalence taking
G(1) to F. Applying Lemma 4.8 of [17] to F' we obtain a germ F’ with multiplicity at
least one less than the multiplicity of F. Define G’ = (H,h)™'.F’, then

G'(z,y) = (x1+ M(2,9), -+ T2 + An—2(2,9), G 1 (2, ), G (2, 9)).
We have
/(:Ei + )\Z(xay))dy = XY + q;(l',y), 1= 17 s, — 27

/G’i(:v,y)dy =q\(x,y), i=n—1n.
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Define

g/(IE, y) = (Ia 1Y + qi(x, y)a cey Tp—2y + Q;L—Q(Ia y)v q;—l(xv y)a q;(x, y))
Again ¢’ is A-finite, adjacent to f and 7(1)(g") < r(1)(f).

7. A-simple singular germs of minimal corank without an M-deformation In
[18] we show that all corank-1, A-simple germs of multiplicity [ + 1 from R?" into R2/*1
have an M-deformation. We also show the existence of an A-simple map-germ from R*
into R® of multiplicity 4 that does not have M-deformation, namely

9= (z1,22,23, 9" + 219, 9° + ¥ + 22y + 339%).

In what follows we generalize this result. That is, we construct unfoldings of the germ
g, which are A-simple germs from R*T3* into R5*** of multiplicity 4 that do not have
M-deformations.

PROPOSITION 7.1 The map-germ f : R¥3F — R3*4% (& > 1) given by
F= @1 msgry, yt oy + w6y y° + 2oy + a3y? way + sy’ + zey’,
T3ky1y + Taky2y” + Tariay’),

is 6-determined, is A-simple and has A.-codimension two. The 0-stable invariant of f
is 7(1,0,0)(f) = 3. The bifurcation set of f in the parameter (u,v)-plane (the unfolding
is given in the proof below) is the union of the non-positive part of the u-axis and the
cuspidal curve 8u® + 27v? = 0 and divides the parameter plane into 8 connected regions.
The numbers of real A1 ,0)-points in these regions are 2, 2 and 0. Hence there is no
M-deformation for f.

Proof. The argument follows the proof of Prop. 4.8 in [18], and is in fact slightly simpler
(the remark following this proof describes the differences between the & = 0 and the
k > 1 cases). Using the unipotent group A; one checks that f is 7-determined. But since
the 7-weighted transversal is empty we can conclude that actually f is 6-determined. The
Ac-versal unfolding of f is given by

F = (u,v,2,y* + 21y + v6y° + uy®,y® + 22y + 239° + vy®, 20y + 259 + w697, . . -,

T3p1Y + T3pt2y” + Taptsy).

The bifurcation set B(f) is the union of sets By(s,m) consisting of (u, v) for which Gy, (s m)
is non-submersive for some (x,y, €2, . . ., €5) (corresponding to the s-tuple of source points
(z,y), (x,y + €2),...,(x,y + €2+ ... + €5)). The map Gy,,m) defines the closure of
the Aj(s,m) set in the source, and we only have to consider “partitions” k(s,m) with
m+ s < mys(0) =4 and k(s,m) # (0) (see [16]). Arguing as in the proof of Prop. 4.8 in
[18], we see that it is sufficient to determine the three sets B(o,0), B(0,0,0y and B(o,0,0,0)
(essentially we obtain all relevant By ) by cutting these three sets with suitable parts of
the diagonal). One can check easily that G o) and G g 9,0y are submersions for all (u,v)
and that B 0,0,0) = {8u® +27v? = 0} U{v = 0,u < 0} (see [18]). Now one calculates the
numbers of real A o )-points of F{, ., at a point (u,v) in each of the three regions in
the complement of R? \ B(f). m
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Remark 7.2 Define f : R**3F — R5T4* for k > 1 as above and for £ = 0 by f :=
(w1, 22, 23, y* + 21, ¥® + 22y + 239y?) (notice that then g = f + 37 - e5 for k = 0). There
are two differences between the k¥ = 0 and the & > 1 cases: (1) for £k = 0 there is an
additional O-stable invariant, namely r(f). And (2) for & = 0 the map-germ f fails to
be 6-determined, but it is topologically 6-determined and furthermore its negative versal
unfolding, given by

F = (u,0,2,y" + a1y +uy?, y° + w2y + w3y” + vy),
is topologically versal (this is shown in the proof of Prop. 4.8 in [18] using a result of Da-
mon [4]). Hence the bifurcation set in the base of a versal unfolding of g is homeomorphic
to that in the base of a negative versal unfolding of f. And the latter has for £ = 0 the
v-axis as an extra component — F{, ,) has two Az-points for v < 0 and none for v > 0

(recall that for k£ > 1 there are no isolated stable Ay points, so it makes geometric sense
that the v-axis is not a component of the bifurcation set for k£ > 1).
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