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The hypersurface of extremal slope consists of extrema of the gradient magnitude
along integral curves of the gradient vector field of a smooth function. We study the
singularities, and other geometric features, of hypersurfaces of extremal slope
associated with generic functions and with one-parameter families of functions
representing generic solutions to the heat equation.

1. Introduction

Given a smooth function g on an open subset Ω ⊂ R
n, let Γ denote the locus of

points in which the (squared) gradient magnitude along the integral curves of the
gradient vector field associated with g attains an extremum. For generic functions
g, Γ is a hypersurface in Ω with isolated singular points. We are interested in the
following questions. What types of singular points and other geometric features
can Γ have for generically chosen functions g? What types of transitions can arise
on Γ for generic one-parameter families of functions and for one-parameter families
representing generic solutions to the heat equation? Here, generic means for an
open and dense subset of the space of smooth functions (or one-parameter families
of smooth functions or solutions to the heat equation).

The present study extends the work in [12] on curves of extremal slope in the
plane to higher dimensions. The original motivation for the work in [12] was to
study the possible evolutions of Canny edges [4] in scale-space, given a generic
two-dimensional signal g (for example, the intensity function of a computer image).

It is time for some definitions. Given a smooth function

g : R
n ⊃ Ω → R, x �→ g(x),

let

∇g(x) :=
n∑

i=1

gxi
· ∂

∂xi

denote the gradient-vector field in Ω and let t �→ α(t) be an integral curve of the
gradient vector through α(0) = x, i.e. dα(t)/dt = ∇g(α(t)). Geometrically, such
an integral curve is the projection of a line of steepest descent on the hypersurface
{(x, g(x)) : x ∈ Ω} onto Ω. Define the following ‘punctured’ set (in case that g has
isolated critical points):

Ωreg := Ω \ {x ∈ Ω : ∇g(x) = 0}.
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The hypersurface of extremal slope is defined as

Γ := {x ∈ Ω : γ(x) = 0, ∇g(x) �= 0},

where Ā denotes the closure of A and

γ :=
1
2

· d〈∇g(α(t)), ∇g(α(t))〉
dt

∣∣∣∣
t=0

= d2g(x)(∇g(x), ∇g(x))

=
∑

1�i�n

g2
xi

(x)gx2
i
(x) + 2

∑
1�i<j�n

gxi(x)gxj (x)gxixj (x)

(here we set gxα := ∂|α|g/∂xα, where xα :=
∏n

i=1 xαi
i , and 〈·, ·〉 denotes the usual

inner product in R
n). The set Γ of extremal slope in gradient direction can be

divided up into subsets of maximal, minimal and ‘transitional’ slope. More precisely,
we set

Γ := Γ− ∪ Γ+ ∪ Γ 0,

where a point x in Γ belongs to one of the three sets on the right-hand side according
to the sign (−, + or 0) of d2〈∇g(α(t)), ∇g(α(t))〉/dt2 at x = α(0).

Note that the set Γ̃ := {(x, g(x)) : x ∈ Γ} is contained in the region of non-
positive curvature of the function graph x �→ (x, g(x)), x ∈ Ω (this is clear if
we write the defining equation of Γ in local coordinates that diagonalize d2g).
The hypersurface of extremal slope Γ can therefore not reach the non-degenerate
maxima and minima of g (i.e. the A1 points of signature n of g).

We summarize our main results in the following statement.

Theorem 1.1.

(i) Excluding a subset of functions g ∈ C∞(Ω, R) of infinite codimension, Γ ⊂ Ω
is a hypersurface with isolated singular points.

(ii) The generic geometry of Γ ∩Ωreg is the same as that of a general hypersurface
in R

n.

(iii) At singular points of g of type Ak, k � 1, Γ has A3k−2 points (furthermore,
Γ has non-simple singular points at Dk, k � 4, and E6, E7 and E8 points
of g).

(iv) Generically (i.e. in codimension 0), Γ has only isolated A1 points at A1 points
of g, and Γ 0 is a smooth submanifold in Γ of codimension 1 that divides Γ
into Γ+ and Γ− regions.

(v) In codimension 1, Γ and Γ 0 can have A1 points at regular points of g, and Γ
can also have A4 points at A2 points of g.

Proof. Statement (ii) is a (somewhat informal) description of the content of propo-
sition 1.7, which, together with the fact that non-isolated singularities of g have
infinite codimension, implies (i). Statement (iii) corresponds to lemma 3.1, and (iv)
and (v) summarize the more detailed results stated in propositions 1.2 and 1.3.
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Table 1. Singular points of Γ

codim γ(x) signature(γ) g(x) signature(g)

0 A1 n − 2, n − 4, . . . , (n mod 2) A1 signature(γ)
1 A1 n, n − 2, . . . , (n mod 2) regular point
1 A4 n − 1, n − 3, . . . , (n − 1 mod 2) A2 signature(γ)

The generic geometry of hypersurfaces of extremal slope Γ is described in more
detail in propositions 1.2 and 1.3 below: the former summarizes the relationship
between the subsets Γ± and Γ 0 of Γ and the integral curves of the gradient vector
field ∇g(x); and the latter describes the possible singularities of Γ . Both proposi-
tions have two parts: part (i) describes the properties of Γ that occur for generic (but
fixed) functions g; and part (ii) describes those occurring for generic one-parameter
families of functions g or for generic solutions to the heat equation.

Let G : R+ × Ω → R+ × R, (t, x) �→ (t, g(t, x)) be a one-parameter family of
smooth functions such that g is a solution to the heat equation ∂g/∂t = ∆g with
initial condition g(0, x) = f(x) ∈ L2(Ω, R). Let T := (t1, t2) ⊂ R+ be an open
interval and let H ⊂ C∞(T × Ω, R) be the space of solutions to the heat equation
on T × Ω. For n := dimΩ � 2, we then have the following result.

Proposition 1.2.

(i) For an open and dense subset of g ∈ C∞(Ω, R), Γ is a hypersurface in Ω with
isolated singular points at {x ∈ Ω : ∇g(x) = 0}. The locus of transitional slope
Γ 0 is a non-singular submanifold of Γ of codimension 1, which divides Γ into
regions of maximal Γ− and minimal slope Γ+. Furthermore, Γ 0 is the locus
of tangency of Γ and the integral curves of the gradient vector field of g. There
are no singular points in Γ−, and the only singular points of Γ+ are of type
γ =

∑n
i=1 aix

2
i , where all ai are non-zero but at least two of them have distinct

signs (i.e. A1 singularities of signature different from n, see proposition 1.3(i)
for more information about these singular points).

(ii) For an open and dense subset of g(t, x) ∈ H or g(t, x) ∈ C∞(T × Ω, R),
the features listed in (i) above occur for open sub-intervals of T . For isolated
points t ∈ T , the set of transitional slope can have singular points of type A1.
(For information about the singular points of Γ see proposition 1.3(ii).)

The following result describes the generic singularities of the hypersurface of
extremal slope Γ = {x : γ(x) = 0, ∇g(x) �= 0} and relates them to the singularities
of g. Multiplying γ by −1 does not change its zero-set Γ , and we therefore define
the signature of γ as follows: signature(γ) := |r+ − r−|, where r± is the number of
positive/negative elements of the diagonalized Hessian d2γ at x.

Proposition 1.3. The list of singular points of γ := d2g(∇g, ∇g) in table 1 is
complete in the following sense.

(i) For an open and dense subset of g ∈ C∞(Ω, R), only the codimension-0 sin-
gularity of γ in table 1 can occur.
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(ii) For an open and dense subset of g(t, x) ∈ H or g(t, x) ∈ C∞(T × Ω, R), the
codimension-0 singularity occurs for open sub-intervals of T and the codimen-
sion-1 singularities for isolated points t ∈ T .

Remark 1.4. Call a property generic if it holds for an open and dense set of solu-
tions g(t, x), t ∈ T , to the heat equation. A result by Damon [7, theorem 1] asserts
that the set of initial conditions f := g(0, x) ∈ L2(Ω, R), which give rise to solutions
g that satisfy any given generic property in all points of T ×Ω, is open and dense in
L2(Ω, R). The properties listed in part (ii) of propositions 1.2 and 1.3 do therefore
arise for open and dense subsets of initial conditions to the heat equation.

Remark 1.5. Clearly, the deformation of an A4 singularity of γ, which is induced
by a one-parameter deformation of an A2 singularity of g, cannot be versal. We shall
see in § 3 that the number of A1 points appearing in deformations of γ induced
by generic solutions g to the heat equation, or by general versal one-parameter
deformations g, depends on the signature of the A4 point. By contrast, it is shown
in § 5 that, in dimension 3, the A1 singularities of Γ and of Γ 0 deform versally. It
seems reasonable to conjecture that this is true in any dimension.

Remark 1.6. In the special case where Ω = [a, b]× [c, d] ⊂ R
2, the arcs of maximal

slope Γ− are known as Canny curves and ‘correspond’ to edge curves in computer
images (see [4, 12]).

The next result says that, loosely speaking, the generic geometry of Γ in the
punctured set

Ωreg := Ω \ {x ∈ Ω : ∇g(x) = 0}

is the same as that of a general hypersurface g−1(0) ⊂ Ωreg. To be more precise,
define the sets

W (g) := {g : W holds for g}

and

W (γ) := {g : W holds for γ := d2g(∇g, ∇g)}.

Here, W is some differential geometric property, such as, for example, ‘h−1(0),
where h = g or γ, has isolated umbilics or isolated A2 singularities’, which imposes
certain conditions on the k-jet of h. To be more precise, let U = Ωreg or T × Ωreg,
then these conditions are the defining equations of W ⊂ Jk(U, R) and the classical
transversality lemma says that the set of h, whose k-jet extension is transverse to
some closed submanifold or, more generally, to some closed Whitney-stratified set
W ⊂ Jk(U, R) on a compact subset of the source, is open and dense in C∞(U, R).
(Note that our sets W will always be semi-algebraic, and hence Whitney stratifi-
able.)

The classical transversality lemma obviously does not apply to solutions to the
heat equation, because open and dense subsets of C∞(U, R) might fail to intersect
H ⊂ C∞(U, R) in open dense sets. For solutions to the heat equation (and also
for other partial differential equations, see [6]), there is the following transversal-
ity result by Damon [5, corollary 5.3]. It says that if the space Hk of k-jets of
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solutions to the heat equation is transverse to some closed Whitney-stratified set
W ⊂ Jk(U, R)(t0,0),0, then the set

{g ∈ H : jkg � U × Hk × R on a compact subset of the source}

is open and dense (for the regular Cl-topology, k + 1 � l). It is easy to see that,
for k � 1, all submanifolds W ⊂ Jk(U, R) whose defining equations involve spatial
partial derivatives only, and not derivatives with respect to t, are transverse to Hk.
For almost all g ∈ H, the k-jet extension jkg will therefore miss submanifolds W of
codimension greater than n + 1 and, for c := codim W � n + 1, the set (jk)−1(W )
has codimension c in U .

In the case of families of functions g that are solutions to the heat equation,
we therefore assume that the defining conditions of W involve only spatial partial
derivatives and not derivatives with respect to t ∈ T . (Also notice that, for g ∈ H,
the induced family γ is, in general, an element of C∞(U, R) and not of H.) We now
have the following result.

Proposition 1.7.

(i) W (g) is an open and dense subset of C∞(Ωreg, R) if and only if W (γ) is.

(ii) W (g) is an open and dense subset of H∩C∞(T ×Ωreg, R) or C∞(T ×Ωreg, R)
if and only if W (γ) is an open and dense subset of C∞(T × Ωreg, R).

1.1. Organization of paper

The remainder of the present paper is organized as follows. Sections 1–4 contain
the proofs of propositions 1.2, 1.3 and 1.7. In § 2 it is shown that, at regular points
of g, the map sending the (k + 2)-jet of g to the k-jet of γ is a submersion. In § 3 it
is shown that Ak singularities of g correspond to A3k−2 singularities of γ, and § 4
concludes the proofs of propositions 1.2, 1.3 and 1.7. In the final § 5 we study the
generic deformations of codimension-1 singularities of Γ and Γ 0 in the case where
dim Ω = 3. We describe normal forms for these deformations up to an equivalence
relation that preserves the decomposition of Γ into regions Γ− and Γ+ of maximal
and minimal slope, respectively.

2. Regular points of g

The following lemma is the key result in the proof of proposition 1.7.

Lemma 2.1. The map φk : Jk+2(Ωreg, R) → Jk(Ωreg, R), with Ωreg ⊂ R
n an open

subset of regular points of g, given by jk+2g �→ jkγ, is a submersion for all 0 � k <
∞, 1 � n < ∞.

Proof. Let α = (α1, . . . , αn) be a multi-index, and make a linear coordinate change
such that ∇g = (gx1 , 0, . . . , 0) with gx1 �= 0. Then

γxα = g2
x1

gxα+2e1 + R,

where e1, . . . , en is the standard basis in R
n and where R is a polynomial in the

partial derivatives gxδ with |δ| < |α| + 2 (here, δ is another multi-index). Hence,
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for all δ with |δ| < |α| + 2 and all δ with |δ| = |α| + 2 but δ �= α + 2e1 :=
(α1 + 2, α2, . . . , αn), we get

∂γxα

∂gxδ

= 0.

Furthermore,

∂γxα

∂gxα+2e1

= g2
x1

.

Therefore, fixing bases

{γxα : k � |α| � 0} and {gxδ : k + 2 � |δ| � 0}

for Jk(Ωreg, R) and Jk+2(Ωreg, R), respectively, such that the multi-indices α and
δ are strictly decreasing with respect to some suitable order on N

n (see below),
we see that dφk = [A | B], where A is an upper diagonal m × m matrix, where
m = dim Jk(Ωreg, R), with the non-zero elements g2

x1
on its diagonal. Hence φk is

a submersion.
For α we take any total degree lexicographical order (i.e. we first compare degrees

and for equal degrees break ties using some lexicographical order for the compo-
nents), and for δ = (δ1, . . . , δn) we apply the induced order from α to δ − 2e1 in
case δ1 � 2, and we give the δ with δ1 < 2 lower weight than any other δ (they
correspond to the B block in dφk = [A | B]).

Remark 2.2. The fact that φk : Jk+2(Ωreg, R) → Jk(Ωreg, R) is a submersion im-
plies the following. Let W be some kth-order differential geometric property of a
hypersurface g−1(0) ⊂ Ωreg, and consider the following submanifolds of Jk(Ωreg, R)
and Jk+2(Ωreg, R):

W k(g) := {jkg : W holds for g}

and

W k+2(γ) := {jk+2g : W holds for γ := d2g(∇g, ∇g)}.

Then the codimensions of W k(g) and of W k+2(γ) = φ−1
k (W k(g)) are equal. This

fact, together with the classical transversality lemma or with Damon’s transversality
results for the heat equation (see § 1), implies that the generic geometry of the
hypersurfaces γ−1(0), g−1(0) ⊂ Ωreg is the same.

The following analogue of lemma 2.1 will be useful later on.

Lemma 2.3. Set β := 〈∇γ,∇g〉. Then the map φk : Jk+3(Ωreg, R) → Jk(Ωreg, R),
with Ωreg ⊂ R

n an open subset of regular points of g, given by jk+3g �→ jkβ, is a
submersion for all 0 � k < ∞, 1 � n < ∞.

Proof. Analogous to the proof of lemma 2.1.
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3. Critical points of g

In this section we study the relationship between the singularities of g and those
of γ. It is easy to see that if g′ is another function that is R-equivalent (or K-
equivalent) to g, then γ′ := d2g′(∇g′, ∇g′) will, in general, not be R-equivalent
(or K-equivalent) to γ. Coordinate changes that do not change the type of singular
point of g can change the singularity type of γ. Nevertheless, we have the following
relationship between Ak singularities of g and γ.

Lemma 3.1. Let x be a critical point of g. Then the function g has an Ak, k � 1,
singularity of signature m at x if and only if γ has an A3k−2 singularity of the same
signature at x. Furthermore, if g has a simple singularity of type Dk, k � 4, or Ek,
k = 6, 7 or 8, at x then γ has a non-simple singularity at x.

Proof. We can assume that x is the origin. Apply a linear change of coordinates
in the source (a rotation) that simultaneously diagonalizes d2g and d2γ and leaves
the singularity types of g and γ fixed (notice that γxixj

= 0, i �= j, for gxixj = 0
and ∇g = 0.) Assign the following weights to the variables:

wt(xi) = k + 1, i < n,

wt(xn) = 2.

For the first implication (⇒), assume that g has an Ak singularity at the origin and
hence is of the form

g =
∑
i<n

1
2aix

2
i + cxk+1

n + R,

where c, ai �= 0 and where the terms of R have weighted degree greater than or
equal to 2k + 2 (by the hypothesis that g is an Ak singularity).

For the corresponding γ, we use the weights

wt(xi) = 3k − 1, i < n,

wt(xn) = 2,

and make the decomposition d2g = D + S, where D is a diagonal matrix with
diagonal elements a1, . . . , an−1, k(k + 1)cxk−1

n and where S = (suv) is a matrix of
higher weight terms. Relative to the weights for γ, the entries of S have the following
weighted degrees:

deg suv > 0, u, v < n,

deg snv, deg sun > 3k − 3,

deg snn > 6k − 6.

The first term of

γ = d2g(∇g, ∇g) = 〈D · ∇g, ∇g〉 + 〈S · ∇g, ∇g〉

is given by
∑
i<n

ai(aixi + Rxi
)2 + k(k + 1)cxk−1

n ((k + 1)cxk
n + Rxn

)2.
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This term, in turn, consists of the weighted-homogeneous initial part
∑
i<n

a3
i x

2
i + k(k + 1)3c3x3k−1

n

of degree 6k − 2 and a remainder of higher weighted degree. One checks that the
second term 〈S · ∇g, ∇g〉 has weighted degree greater than min(6k − 2, 7k − 3),
which, for k > 1, is greater than 6k − 2. Hence γ has an A3k−2 singularity at x, as
required. Also note that

sgn( 1
2ai) = sgn(a3

i ) and sgn(c) = sgn(k(k + 1)3c3).

Hence, if g is of type Ak and signature m, then γ is of type A3k−2 and signature m.
For the converse, it is essential that ∇g = 0 at the origin, so that altering g by

any linear term leaves γ fixed. But, assuming that g is singular at the origin, it is
an easy matter to reverse the above argument.

For the last statement, note that Dk and Ek singularities have zero 2-jet but
non-zero 3-jet. But, for zero 2-jets of g, the corresponding γ has zero 3-jet.

We conclude this section by considering deformations of A4 points of γ that are
induced by one-parameter deformations of A2 points of g, either by general versal
one-parameter deformations or generic solutions to the heat equation. In particular,
we are interested in counting A1 points of some given signature. This will be useful
in § 5.

Consider a versal one-parameter deformation of an A2 singularity with deforma-
tion parameter t, or a generic solution to the heat equation near an A2 singularity.
Depending on the sign of t, the A2 point of g deforms into zero or two A1 points in
both cases (in Damon’s classification of generic solutions to the heat equation, there
are two normal forms for A2: one corresponds to the creation of two A1 points; the
other to the annihilation (see [5, list II, § 2])). Lemma 3.1 tells us that the A1 points
of some given signature that appear in a deformation of g are also A1 points of the
same signature of the deformation of γ. Recall that only A1 points of signature
different from n belong to Γ . The number of singular points of type A1 that appear
in a deformation of γ that is induced by a deformation of g is therefore equal to
the number of A1 points of signature different from n that appear in a deformation
of g. In particular, we have the following relation. Consider a versal one-parameter
deformation of an A2 point of g. If the corresponding A4 point of γ has signature m,
then it either deforms into zero or two A1 points, and the A1 points have signature
m + 1 and m − 1 (for m > 0) or m + 1 and 1 (for m = 0). (Note that a small
versal deformation preserves the signs of the non-zero eigenvalues of the Hessian
and makes the zero eigenvalue positive at one A1 point and negative at the other.)
We therefore have the following result.

Lemma 3.2. Consider a deformation of an A4 point of Γ of signature m induced
by a versal deformation of an A2 point of g. There are two types of stabilizations,
Γ ′ and Γ ′′, that appear in such a deformation of Γ : (i) Γ ′ is a smooth hypersurface
germ; and (ii) Γ ′′ has either two A1 points of signature m ± 1 (for m �= 0, n − 1),
two A1 points both of signature 1 (for m = 0) or one A1 point of signature n − 2
(for m = n − 1).
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4. Proofs of the main propositions

For the proof of statements (i) and (ii) of proposition 1.3, we either use proposi-
tion 1.7 (for the regular points of g) or the relationship between the singularities
of g and γ (lemma 3.1) and apply the classical transversality lemma or Damon’s
results for the heat equation. Proposition 1.7 says that, at a regular point x of g, the
hypersurface Γ has the generic singularities of a general hypersurface: it is smooth
in general and, in one-parameter families, it can have A1 singularities for isolated
points t ∈ T (at an A1 point, the defining equation of a hypersurface and its gradi-
ent have to vanish, which imposes n + 1 conditions on its 1-jet). At singular points
x of g, we have the following. The functions g having an A1 singularity at x, and
hence also an A1 of γ, correspond to a codimension-n submanifold in jet-space. A2
points of g, which are A4 points of γ, correspond to codimension-(n + 1) behaviour
(and hence can occur for isolated points t), and more degenerate singularities of g
of codimension greater than or equal to n+2 do not occur in generic one-parameter
families nor in generic solutions to the heat equation.

For the proofs of propositions 1.2 and 1.7, we do not directly apply the transver-
sality lemma, or Damon’s generalization, to the space of jets Jk+s(Ωreg, R) of g.
Instead, we use the transversality of the maps φ : Jk+s(Ωreg, R) → Jk(Ω, Rm), send-
ing the (k + s)-jet of g to the k-jet of the defining equation of Γ or of Γ 0, to certain
submanifolds W ⊂ Jk(Ω, Rm) (lemmas 2.1, 2.3, and 4.1 below), together with the
basic fact that, in this case, φ−1(W ) ⊂ Jk+s(Ω, R) is a submanifold of the same
codimension as W or is empty.

In fact, for the defining equation γ of Γ , the map φ is a submersion (lemma 2.1)
and hence transverse to any submanifold in its target. This implies proposition 1.7.
For the defining equations of Γ 0, the situation is slightly more complicated, because
φ is, in general, not a submersion. Here, the situation is as follows.

Proof of proposition 1.2 (conclusion). The boundary Γ 0 between the regions of
maximal and minimal slope of Γ is given by the vanishing of γ and β := 〈∇γ,∇g〉;
more precisely,

Γ 0 := {x ∈ Ω : γ(x) = β(x) = 0, ∇g(x) �= 0}.

One checks that, at a singular point x of g, the tangent cones of γ−1(0) and β−1(0)
coincide and that γ−1(0) ∩ β−1(0) = {x}. The singular points of g are therefore
isolated solutions of γ = β = 0 that do not belong (by the definition above) to Γ 0.
Hence Γ 0 is a subset of Ωreg. Lemma 2.3 implies that β−1(0) ⊂ Ωreg is a smooth
hypersurface for open intervals in T and has isolated A1 singularities for isolated
points t ∈ T . The type of singularity, or the regularity, of Γ 0 depends on the
K-class of the map F = (γ, β) : Ω → R

2, whose zero-set is Γ 0. One checks that
the sets Γ 0 ∩ {x ∈ Ωreg : ∇γ(x) = 0} and Γ 0 ∩ {x ∈ Ωreg : ∇β(x) = 0} correspond
to behaviour of codimension greater than or equal to n + 2, and hence can be
avoided in generic one-parameter families or in generic solutions to the heat equa-
tion (even for isolated t). The map (γ, β) : R

n → R
2 is therefore regular or has

corank 1 (if one excludes behaviour of codimension greater than or equal to n+2).
Let Σ1[Jk(Ωreg, R

2)] denote the space of k-jets of maps of corank less than or equal
to 1. The next lemma then completes the proof of proposition 1.2.
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Lemma 4.1. Let W (Ā1) and W (Ā2) denote the closures of the K-orbits of maps
R

n → R
2 of type A1 and A2 in Σ1[J2(Ωreg, R

2)]. The sets W (Ā1) and W (Ā2)
are semi-algebraic subsets of Σ1[J2(Ωreg, R

2)] of codimension n + 1 and n + 2,
respectively, and the image of the map φ : J5(Ωreg, R) → Σ1[J2(Ωreg, R

2)], given
by j5g �→ j2(γ, β), is transverse to all the strata of a Whitney stratification of these
semi-algebraic sets.

Proof. After a coordinate change, we can assume that

(γ(x), β(x)) = (x1, β(x2, . . . , xn)).

The conditions for an A1 singularity (or worse) are then

γ = β = βx2 = · · · = βxn
= 0,

and for an A2 singularity (or worse) we have the additional condition |d2β| = 0. The
sets of regular points, of A1 points and of A2 points are therefore semi-algebraic
subsets of Σ1[J2(Ωreg, R

2)] of codimension 2, n + 1 and n + 2, respectively.
To verify the second assertion, it is sufficient to check that the restriction, φ̃, of

φ to the linear subspace

L := R{γ, βxα : 0 � α � 2} ⊂ Σ1[J2(Ωreg, R
2)]

(which is spanned by the constant term of γ and by the constant, linear and
quadratic terms of β) is a submersion. The highest-order derivatives appearing
in the kth derivatives of γ and β are of order k+2 and k+3, respectively. As in the
proof of lemma 2.1, we can see that the map φ̃ : J5(Ωreg, R) → L is a submersion
by choosing suitable term orders in the source and target. For x ∈ Ωreg,

∇g(x) = (0, . . . , 0, gx�
(x), . . . , gxn(x)),

where gx�
(x) �= 0. (The above condition for an A1 singularity already involved

a source coordinate change, so we cannot, by a further coordinate change (as in
lemma 2.1), assume that ∇g = (gx1 , 0, . . . , 0).) If

{βxα , γ : 2 � α � 0} and {gxδ : 5 � δ � 0}

are bases for L and J5(Ωreg, R), then the multi-index α is strictly decreasing with
respect to some total degree lexicographical order. For the δ with δ1 � 3, we apply
the order for α to δ −3e�, and all δ with δ1 < 3 have lower weight than any other δ.
Now we see that dφ̃ is surjective.

5. Deformations of codimension-1 singularities
of Γ and Γ 0 for dim Ω = 3

In the present section, Γ is a two-dimensional hypersurface in Ω, and its subre-
gions of maximal and minimal slope, Γ− and Γ+, are drawn in grey and white,
respectively. Also, Ak(m) will denote an Ak singularity of signature m. Figure 1
summarizes the stable features of Γ for dimΩ = 3 (recall part (i) of propositions 1.2
and 1.3): the locus of transitional slope Γ 0 is a smooth space-curve dividing the
surface Γ into smooth regions Γ− of maximal slope and regions Γ+ of minimal
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Figure 1. The surface Γ of extremal slope (for n = 3). Regions of maximal slope Γ −

are shown in grey. The three double-cones of type A1(1) belong to the region of minimal
slope Γ+.

slope that have A1(1) singularities at the saddle-points of g. In the complement of
the A1(1) points, the surface Γ has the same generic features as a general surface
in 3-space (proposition 1.7(i)). For example, the parabolic curves P ⊂ Γ are non-
singular, and the image of the parabolic curves under the Gauss map is a curve in
the sphere with isolated cusps and crossings [1]. The ridge curves R ⊂ Γ intersect
in umbilical points of Γ , and there are three different types of umbilics according
to Porteous [11].

In generic one-parameter families of functions g, or in generic solutions g to the
heat equation, the codimension-1 singularities of Γ 0 and Γ described in part (ii)
of propositions 1.2 and 1.3 can occur for isolated points t ∈ T , namely (1) A1
points of Γ 0, (2) A1 points of Γ at regular points of g, and (3) A4 points of Γ at A2
points of g. Furthermore, by proposition 1.7(ii), Γ ∈ Ωreg can have the same generic
transitions as a generic one-parameter family of general hypersurfaces in 3-space.
For example, the parabolic and ridge curves on Γ can have certain singular points
for isolated points t ∈ T whose deformations in generic one-parameter families of
general hypersurfaces have been classified by Bruce et al . in [2] and [3], respectively.

To understand the generic deformations of the codimension-1 singularities of Γ 0

and Γ , we have to study versal one-parameter deformations of the maps F = (γ, β)
and γ for some appropriate equivalence relation. A list of normal forms for these
one-parameter deformations can be obtained by adapting an argument given by
Damon in [8], that is, by using a somewhat finer equivalence relation than in [8].

First, we briefly sketch Damon’s argument (see [8, part IV] for details). Note
that the jet extensions of the maps F and γ, for t fixed, will be transverse to
any given submanifold V for almost all t ∈ T , but for certain isolated t they
can be non-transverse to certain submanifolds of codimension less than or equal
to 4 (codimension-5 behaviour can be avoided in generic one-parameter families of
functions in three variables). Damon has argued that the relevant one-parameter
deformations of such non-transverse maps are KV versal, where V is a some sub-
manifold in jet-space. (Recall that, for an analytic variety V in the target of a
smooth map-germ f , there is a refinement of the standard K-equivalence for f
whose target coordinate changes preserve V . For the standard contact group K,
consult, for example, [10].) Using the facts that the submanifolds V are smooth
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products {0} × R
i, i � 4, that the KV codimension is invariant under suspension

and that, for V = {0}, KV -equivalence reduces to Ke-equivalence, Damon obtains
the following normal forms for the versal one-parameter deformations,

(
x1, . . . , xi, x

2
i+1 +

3∑
j=i+2

εjx
2
j + t

)
,

where 0 � i � 2 and εj = ±1, and (x1, x2, x3, t). Setting the deformation parameter
t = 0, these normal forms are A-stable corank-1 germs of Ke-codimension 1. Finally,
considering the jets of these Ke-codimension-1 germs, these jets form Zariski open
subsets of the space of algebraic maps that are non-transverse to V . It is therefore
enough to construct an example for each normal form.

In our context, we have to refine this classification as follows. At regular points of
Γ , the equivalence relation has to preserve the curve Γ 0 and the decomposition of
Γ into regions of maximal and minimal slope (K+-equivalence below). At singular
points of Γ , we have the additional restriction that the equivalence has to preserve
the level sets γ = const. of the map F = (γ, β) (D+-equivalence below).

Below, x, y, z are the source coordinates of F and γ, and Cxyz denotes the
ring of smooth function-germs at the origin. For the A1 points of Γ 0 and of Γ
(at regular points of g), we first give refined normal forms for the relevant versal
one-parameter deformations of F and γ. We then construct one-parameter families
g whose associated F and γ are equivalent to these normal forms (under the above
refined equivalences).

For the A4 points of Γ , corresponding to A2 points of g, the induced deformations
of γ and F = (γ, β) cannot be versal. But we can use Damon’s normal forms [5] for
the deformation of g, together with the correspondence of A1 points of g and γ, to
describe the generic transitions of Γ .

5.1. A1 points of Γ 0

Proposition 1.2 says that the curve of transitional slope Γ 0 can have A1 singular-
ities of signature 0 or 2, for isolated t ∈ T . The curve Γ 0 is the zero-set of the map
F : R

3 → R
2, (x, y, z) �→ F := (γ(x, y, z), β(x, y, z)), and the generic transitions at

an A1 point of F are given by a K-versal deformation of F . Recall, however, that
Γ 0 is the boundary between the white Γ+ and the grey Γ− regions. To keep track
of the possible transitions in the ‘colouring’ of Γ , we have to use a finer equivalence
than K-equivalence that preserves the boundary Γ 0 and that does not exchange
white and grey regions.

If (u, v) are coordinates in the target of F , then the target coordinate changes
for ordinary K-equivalence are of the form

(h1, h2) := (a11(x, y, z)u + a12(x, y, z)v, a21(x, y, z)u + a22(x, y, z)v),

where a11a22 − a12a21 is non-zero in a neighbourhood of the origin. A target coor-
dinate change (h1, h2) preserves the half-space S+ := {(u, v) : v � 0} if it is of
the form h2(u, v) = vh̃2(u, v) with h̃2(0, 0) > 0. For elements of K this means that
a22(0, 0, 0) > 0. The subset K+ of elements of K satisfying this condition does not
form a subgroup, but it turns out that it is sufficient to work with a restricted sub-
set K+

r of K+ whose target coordinate changes are elements of the form A · (u, v)T,
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O

Figure 2. The singular points of Γ 0 ⊂ Γ (shown in the centre of each row) and their
deformations (on the left and right): (i) an A1(2) point in a Γ − region (top row); (ii) an
A1(2) point in a Γ+ region (middle row); and (iii) an A1(0) point (bottom row).

where A belongs to the unipotent subgroup of GL(2, Cxyz) of lower-diagonal matri-
ces, with ones on the diagonal. Note that K+

r is a subgroup of K.
One checks that there are three equivalence classes of maps F at 0 with dF = 0

and |d2F | �= 0 (i.e. A1 points) both for K+- and for K+
r -equivalence. The normal

forms for a versal deformation of these A1 points (where t is the deformation param-
eter) are given by (i) (y, −x2 − z2 + t), (ii) (y, x2 + z2 + t) and (iii) (y, x2 − z2 + t).

On the other hand, starting with

g = x + 1
2z2 + x2y + ax3y + 1

5bx5 + 1
3 tx3,

we can reduce F = (γ, β) to one of the normal forms above by K+
r coordinate

changes: for a > 2
3 , b < − 7

6 , we reduce to (i); for a < 2
3 , b < − 7

6 to (ii); and for
a > 2

3 , b > − 7
6 , to (iii). The three types of A1 singularities and their deformations

are shown in figure 2.
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Figure 3. Singularities of Γ at regular points of g: (i) first type of A1(1) point (centre)
and its deformations (left and right).

Figure 4. Singularities of Γ at regular points of g: (ii) second type of A1(1) point
(centre) and its deformations (left and right).

Figure 5. Singularities of Γ at regular points of g: (iii) an A1(3) point (centre)
and its deformations (left and right).

5.2. A1 points of Γ at regular points of g

At regular points of g, Γ can now have isolated A1 singularities of signature 1
and 3 (proposition 1.3). The K-versal deformations of the A1(m) points, m = 3
and 1, are given by x2 ± y2 ± z2 + t, respectively. If

g = x + 1
2 tx2 + 1

4ax4 + 1
2bx2y2 + 1

2cx2z2, a, b, c �= 0,

then j2γ = 3ax2 +by2 +cz2 +t. One checks that γ is K-equivalent to x2 +y2 +z2 +t
for sgn(a) = sgn(b) = sgn(c) and to x2 − y2 − z2 + t otherwise.

The above normal forms for the A1 singularities of γ do not take into account the
decomposition of Γ into Γ+ and Γ− regions. On the other hand, K+-equivalence for
the maps F = (γ, β) does not preserve the singular points of γ−1(0). The following
refinement of D-equivalence (D-equivalence has been introduced by Mancini and
Ruas in [9]) preserves both the set S+ in the target of F as well as the level sets of
γ. Consider the composition π1 ◦ F : R

3 → R
2 → R, where π1(u, v) = u. Then D+

is the subgroup of A of germs of diffeomorphisms k ∈ Diff(R3, 0), h ∈ Diff(R2, 0)
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Figure 6. Singularities of Γ at A2 points of g: an A4(2) point of Γ (centre)
and its deformations (left and right).

Figure 7. Singularities of Γ at A2 points of g: an A4(0) point of Γ (centre) and its defor-
mations (left and right). The surface on the right represents only the ‘upper half’ of a
deformation of the A4(0) surface: the surface can be completed by turning the ‘upper
half’ upside down, turning it by 90◦ (as indicated) and by gluing the resulting ‘lower half’
to the ‘upper half’. Figure 8 below shows a sequence of horizontal sections, from top to
bottom, of this surface.

and l ∈ Diff(R, 0) having the following properties:

h = (h1, h2 = vh̃2) such that h̃2(0, 0) > 0

and
dπ1(h) + l(π1) = 0.

The normal forms for F = (γ, β), corresponding to A1 points of γ, for D+-equiva-
lence (and also for D-equivalence) are given by (x2 + ε1y

2 + ε2z
2, x), εi = ±1

(the ‘tangent folds’ [9, item 2′ in table 1]). The normal forms are D+-stable and,
by Damon’s result, have Ke-codimension 1. There are three normal forms for
deformations of F , where γ has an A1 point at t = 0: (i) (x2 − y2 − z2 + t, x);
(ii) (x2 +y2 −z2 + t, x); and (iii) (x2 +y2 +z2 + t, x). Finally, starting with the func-
tion g above, we obtain j2F = (3ax2+by2+cz2+t, 6ax): the case sgn(b) = sgn(c) �=
sgn(a) corresponds to (i); sgn(b) �= sgn(c) to (ii); and sgn(a) = sgn(b) = sgn(c)
to (iii). The three cases are shown in figures 3, 4 and 5, respectively.

5.3. A4 points of Γ at A2 points of g

For isolated points t ∈ T , Γ has an A4 singularity at a degenerate A2 saddle of g
(proposition 1.3). The signature-2 case is shown in figure 6 and the (geometrically
more complicated) signature-0 case in figures 7 and 8. Figure 8 shows a sequence of
sections through the surface shown on the right of figure 7. The deformations of the
A4 points, shown on the left and right in figures 6 and 7, follow from lemma 3.2: the
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Figure 8. Horizontal sections through the right surface in figure 7, from top to bottom. The
dotted circles in sections 4–8 belong to β−1(0), and their intersections with the other curves
belong to Γ 0. The curve segments in the interiors of the circles belong to Γ −, the other
curve segments to Γ+. There are five special sections: the two A1(1) double-cones are the
line-crossings marked with solid dots (sections 2 and 10); the two sections where the circles
are tangent to curve segments (sections 4 and 8); and the line-crossing corresponding to
a horizontal saddle of Γ (section 6). The ‘upper half’ of Γ , the right surface in figure 7,
is the union of all sections up to section 6 through the saddle, the ‘lower half’ starts with
section 6. Notice the 90◦ turn.

single A1 point (in the signature-2 case) and the pair of A1 points (in the signature-0
case) in the deformations on the right in figures 6 and 7 all have signature 1.

The ‘colouring’ of the figures into white Γ+ and grey Γ− regions has been deter-
mined from Damon’s normal forms for the deformation of an A2 point of g, but
other ‘colourings’ might arise generically. The deformations of γ and F = (γ, β)
induced by g are not K+ nor D+ versal, Damon’s normal forms for the deforma-
tions of g therefore do not necessarily give all the generic possibilities for colouring
the deformations of an A4 point of Γ . However, one can check that, for any A2
point 0 of g, the function β is positive on a punctured neighbourhood of 0 and
has an A5 point of signature 2 at 0. The A4 point of Γ lies therefore in a white
Γ+ region. Furthermore, one checks that the deformations of Γ , corresponding to
the non-singular surfaces shown on the left in figures 6 and 7, are also white Γ+

regions, because the corresponding β is positive in a neighbourhood of 0. But, at
this point, we do not know whether, generically, the deformations on the right in
figures 6 and 7 can have different colourings from the ones shown there.

Finally, note that Damon gives two normal forms for solutions to the heat equa-
tion near an A2 point of a given signature: one corresponds to the annihilation of
critical points of g and the other to the creation. The latter evolution also corre-
sponds to the creation of singular points of Γ and of a new Γ− region (see the
sequences of surfaces by moving from left to right in figures 6 and 7 (recall the
discussion in § 3)).
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