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Abstract

All A-simple corank-1 germs from Rn to Rn+1, where n 6= 4, have an M-deformation,

that is a deformation in which the maximal numbers of isolated stable singular points

are simultaneously present in the image.
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1. Introduction

In the present paper we study real deformations of C∞ map-germs from Rn into Rn+1

for which the maximal numbers of isolated stable singular points are simultaneously

present in the image which we call M-deformations for short (M as in maximal), fur-

thermore we call the maximal numbers of isolated stable singularities 0-stable invariants.

Here “maximal”, of course, in comparison with the upper bound given by the corre-

sponding numbers of isolated stable singular points of each given type appearing in a

stable perturbation of the complexified germ. For map-germs of target dimension no

greater than the source dimension we replace in the definition of a M-deformation image

by discriminant. This terminology is analogous to the concept of a M-morsification of

a function-germ, which, for example, exist for singularities of type Ak and Dk [2, 8],

and also for those of type E6, E7 and E8. For map-germs the following is presently

known about M-deformations. The classical result by A’Campo [1] and Gusein-Zade

[11] states that plane curve-germs always have M-deformations, i.e. deformations with δ

real double-points (notice that the δ-number is the only 0-stable invariant in this case).

More generally, the same is true for map-germs from Rn to R2n for any n with the extra

hypothesis of A-simplicity (which is not needed for n = 1), see [16]. M-deformations also

exist for all A-simple singular germs from Rn to Rp, n ≥ p, of rank p − 1 [29].

For map-germs from Rn to R2n the existence of an M-deformation is, by a result of

Houston [13], equivalent to the existence of a good real perturbation – recall that a good

real perturbation of a map-germ f is a real perturbation for which the homology of the

image (for n < p) or discriminant (for n ≥ p) coincides with that of its complexification

(see [19, 5]). On the other hand, amongst the A-simple singular germs from Rn to Rp,

n ≥ p, of rank p − 1 (all of which have an M-deformation by [29]) there are many
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without a good real perturbation, exceptional germs as well as germs forming a series.

(A convenient source for finding examples of such germs without good real perturbations

is the classification of corank-1 germs f : R2 → R2, where the real bifurcation sets of all

A-simple germs and of all germs of topological Ae-codimension less than 4 – and hence

essentially all stable real perturbations of these germs – are known [25].) For general

(n, p) it is known that every Ae-codimension 1 orbit of singular map-germs Cn → Cp

of minimal corank has a real representative which in turn has a good real perturbation

[5, 14, 21]. And it is also known that every real Ae-codimension 1 singular map-germ

of minimal corank has an M-deformation [30] – notice that the second statement holds

for a larger class of map-germs: for example, the complex A-orbit of f = (x, y3 + x2y)

has representatives f± = (x, y3 ± x2y) (distinct over the reals), both having an M-

deformation, but only f+ (the lip) has a good real perturbation (not the beak-to-beak

f−).

The main result of the present paper is that all A-simple corank-1 germs from Rn to

Rn+1, n 6= 4, have an M-deformation. We also show that in dimensions (4, 5) the open

A-orbit in A3 is A-simple and consists of germs that do not have an M-deformation

and also do not have a good real perturbation. This is the first example of an A-simple

singular germ f : Rn, 0 → Rp, 0 of minimal corank without an M-deformation (notice

that singular of minimal corank simply means corank-1 for p ≥ n and corank n − p + 1

for n > p). We discuss the question how the A-simple singular germs of minimal corank

and the class of germs having an M-deformation might be related in the final Section 5

of this paper.

The main technical improvement, compared to our study of M-deformations in dimen-

sions (n, p) with n ≥ p in [29], is a technique for detecting positive A-modality. With this

technique one can also obtain the main result in [29] (the existence of M-deformations

for all A-simple singularities of minimal corank) by a much shorter argument, on the

other hand one loses information about the A-classification in this way.

For map-germs f : Kn, 0 → Kn+1, 0 of corank greater than one the following is known.

By a simple counting argument one can show that there are no A-simple map-germs of

corank ≥ 2 for n < 5. And for n = 5 there is an A-simple complex corank-2 germ of Ae-

codimension 1 which does not have a real representative with a good real perturbation

[22] (but this map-germ does have an M-deformation).

2. Notation and the main results

A corank-1 germ f : Rn, 0 → Rn+1, 0 is given by the pre-normal form

(x, y) 7→ (x, gn(x, y), gn+1(x, y)),

where (x, y) ∈ Rn−1 × R. Let f̃ = (f̃1, . . . , f̃s) : Rn, S → Rn+1, f̃(S) =: q, f̃i(x, yi) =

(x, gn(x, yi), gn+1(x, yi)), i = 1, . . . , s := |S|, be an s-germ appearing in a deformation

of f (here S is a finite set of source points being mapped to the point q in the target).

The corank-1 K-classes of germs Rn, 0 → Rn+1, 0 are those of Ak, with representa-

tives (x, yk+1, 0), and the K-classes of s-germs A(k1,...,ks) have an Aki
-singularity at the

ith source point. The stable corank-1 multi-germs are those transverse to their K-class

A(k1,...,ks), where ki ≥ 0. Setting m :=
∑s

i=1 ki, the isolated stable (or 0-stable) singular-

ities in dimensions (n, n + 1) amongst these are those with 2(m + s− 1) = n + s− 1. Let

k(s, m) := (k1, . . . , ks) be such a “partition” of m with s summands (recall that ki ≥ 0).

For map-germs f : Cn, 0 → Cn+1, 0 the number of isolated stable Ak(s,m)-points in a
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generic deformation of f , denoted by rk(s,m)(f), can be calculated by dividing the local

multiplicity of a certain map-germ Gk(s,m) : Cn+s−1, 0 → Cn+s−1 by some overcount

factor (see [27] and Section 3·2 below).

For real germs f the invariants rk(s,m)(f) are defined by complexifying, but clearly the

above geometric interpretation no longer holds: the number rR

k(s,m)(ft) of real Ak(s,m)-

points in a deformation ft of f now depends on the choice of deformation. One only has

the obvious inequality rR

k(s,m)(ft) ≤ rk(s,m)(f).

We call a real deformation ft of f an M-deformation, if the maximal numbers rk(s,m)(f)

of 0-stable singularities (for all “partitions” k(s, m) of m satisfying 2(m+s−1) = n+s−1)

are simultaneously present in the image of ft.

The main result on the existence of M-deformations in the present paper is the following

Theorem 2·1. All A-simple corank-1 germs f : Rn, 0 → Rn+1, 0, where n 6= 4, have

an M-deformation.

In dimensions (4, 5) we have

Proposition 2·2. The A-simple corank-1 germs f : R4, 0 → R5, 0 have local multi-

plicity mf (0) ≤ 4. And all such germs of local multiplicity at most three have an M-

deformation, but the germs in the open A-orbit in A3 do not have an M-deformation and

furthermore they do not have a good real perturbation.

Remark 2·3. We are using the usual notion of A-simplicity of mono-germs in the above

proposition, i.e. f is A-simple if only mono-germs from a finite number of A-classes appear

in any deformation of f . Following Zhitomirskii [33], we say that a mono-germ f is fully

A-simple if only mono- and multi-germs from a finite number of A-classes appear in any

deformation of f . However, it is easy to see that the germ f = (x1, x2, x3, y
4 + x1y, y6 +

y7+x2y+x3y
2), whose A-orbit is open in A3 and which does not have an M-deformation,

is also fully simple (it has Ae-codimension 2 and all the Ae-codimension 1 multi-germs

appearing in its versal deformation are simple).

We now fix some notation. Let Cn denote the local ring of smooth (or complex-analytic)

function germs f : Kn, 0 → K, 0 and Mn its maximal ideal. For the groups A and K (of

left-right and of contact equivalence, respectively) acting on the space of smooth map-

germs and for the tangent spaces to the A- and K-orbits we use the usual notation, such

as TA · f = tf(Mn · θn) + wf(Mp · θp) and TK · f = tf(Mn · θn) + f∗Mp · θf (a basic

reference for these concepts is the survey on determinacy [32] by Wall). For map-germs

f : Kn, 0 → Kn+1, 0 of corank 1 we use source coordinates (x, y) = (x1, . . . , xn−1, y)

such that f(x, y) = (x, gn(x, y), gn+1(x, y)), and target coordinates (X1, . . . , Xn+1). In

describing elements of TA·f we sometimes use the shorter notation ei for the target and

source vector fields ∂/∂Xi and ∂/∂xi (where xn = y).

3. Techniques

The principal techniques in the proofs of our results will be a counting argument

for detecting positive A-modality and splitting off 0-stable real singular points from the

origin in the target by origin preserving deformations of f to map-germs g whose 0-stable

invariants rk(s,m) differ from those of f by at most one. The invariants rk(s,m)(f) are (up

to some overcount factor) equal to the multiplicity of certain maps Gk(s,m) associated

with f whose 0-sets define the closure of the Ak(s,m) locus in the source of the s-germ
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of f . The maps Gk(s,m) have been studied in [27] (and they have been used before in

[26] in the study of bifurcation sets). Alternative ways of defining the Ak(s,m) locus have

been described in [18] for corank-1 germs from Cn to Cp, p ≥ n, and in [10] for corank

n − p + 1 germs from Cn to Cp, n ≥ p. In Section 3·2 we recall some properties of the

maps Gk(s,m) for map-germs f : Kn, 0 → Kn+1, 0, but first we describe the counting

technique.

3·1. Detecting positive A-modality

In the proofs we use certain sufficient conditions for positive A-modality that are based

on counting arguments in A-tangent spaces filtered by weighted degrees.

Let f : Kn, 0 → Kp, 0 be weighted-homogeneous with weights w = (w1, . . . , wn) and

weighted degrees δ = (δ1, . . . , δp), and let (θn)s, (θp)s and (θf )s denote the weighted

degree s parts of the modules of source-, target-vector fields and vector fields along f ,

respectively. (Recall that the monomial vector fields u ·ei ∈ θn, v ·ei ∈ θp and m ·ei ∈ θf ,

with exponent vectors αu, αv and αm, have weighted degree s if 〈αu, w〉−wi, 〈αv, δ〉− δi

and 〈αm, w〉 − δi are equal to s.) For integers s ≥ 0 consider the linear maps

γs(f) : (θn)s ⊕ (θp)s → (θf )s, (a, b) 7→ tf(a) − wf(b),

of K-vector spaces. Notice that (Ew , Eδ), where Ew :=
∑

i wixi · ei (where xn = y) and

Eδ :=
∑

j δjXj ·ej are the Euler vector fields in source and target, is in the kernel of γ0(f),

and we call e(f) := γ0(f)(Ew, Eδ) the Euler relation. From the Cp-module generated by

e(f) we get further relations in the higher weighted degree-s parts (s > 0) of TA · f

(notice: e(f) = 0 implies γs(f)(f∗Xα · Ew, XαEδ) = 0 for target monomials Xα with

〈α, δ〉 = s).

Now let f be a corank-1 germ in dimensions (n, p) = (n, n + 1) such that wn = 1 and

let Hr
n and Hr

n−1 denote the vector spaces (possibly 0-dimensional) of monomials in x, y

and in x, respectively, of weighted degree r, then we can write

(θf )s = Hs+δ1
n ∂/∂X1 ⊕ . . . ⊕ Hs+δn+1

n ∂/∂Xn+1, Hr
n =

r
⊕

i=0

yiHr−i
n−1.

And (since wi = δi, i < n, and wn = 1)

(θn)s = Hs+δ1
n ∂/∂x1 ⊕ . . . ⊕ Hs+δn−1

n ∂/∂xn−1 ⊕ Hs+1
n ∂/∂y.

Let Kr
n+1 denote the vector space generated by target monomials Xα of weighted degree

r and set Br := {Xα ∈ Kr
n+1 : αn + αn+1 > 0}, then we have the decomposition

(θp)s = Ks+δ1
n+1 ∂/∂X1 ⊕ . . . ⊕ K

s+δn+1

n+1 ∂/∂Xn+1, Kr
n+1

∼= Hr
n−1 ⊕ Br

(remark: substitute x1, . . . , xn−1 in Hr
n−1 by X1, . . . , Xn−1). And we can decompose

Br ∼=
⊕

0<αnδn+αn+1δn+1≤r

Xαn

n X
αn+1

n+1 H
r−αnδn−αn+1δn+1

n−1 .

Finally, note that we have a vector space e(f)Ks
n+1 of relations of weighted degree s from

the Euler relation.

The counting arguments involve comparing the source dimensions of the maps γs(f),

minus dim e(f)Ks
n+1, and the target dimensions of these maps. And we can cancel most of

the direct summands (isomorphic to Hi := Hi
n−1 for some i) in the above decompositions

and count only the dimensions of the few remaining terms.
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The most basic form of the counting argument is then as follows. Suppose the kernel

of γ0(f) is 1-dimensional and therefore generated by (Ew , Eδ), and that

cs := dim(θf )s − dim(θn)s ⊕ (θp)s + dim e(f)Ks
n+1 ≥ 2,

for some s > 0, then dim(θf )s/imγs(f) ≥ 2 (so that the weighted degree s complete

transversal of f is at least 2-dimensional). Then g := f + c1m1 + c2m2 + . . . (where the

monomial vectors mi generate the weighted degree s complete transversal) is at least uni-

modal, because the weighted degree-0 part of any generator tg(a)−wg(b), (a, b) ∈ θn⊕θp,

relating the mi must lie in the kernel of γ0(f), which is 1-dimensional.

In order to apply this counting argument we typically find a germ f as above – that is,

f weighted homogeneous and with essentially unique weights (i.e. unique up to common

multiplicative factor) such that γ0(f) has 1-dimensional kernel generated by (Ew, Eδ) –

which is “best possible” within its K-orbit in the sense that γ0(f) is surjective, so that

the F 0A-orbit of f is open in its F 0K-orbit. (Here F s refers to the filtration on C×p
n ,

p = n + 1, induced by the weights and weighted degrees of f : for G = A or K, F sG

denotes the subgroup of G of elements of weighted degree at most s.)

Finally, notice that γ0(f) fails to be surjective if c0 ≥ 1. In this case there is a modulus

in weighted degree zero (this trivial version of the counting argument is required in the

proof of Proposition 4·6 (v)).

3·2. The maps Gk(s,m) [27]

To a given corank-1 germ f : Kn, 0 → Kn+1, 0, f(x, y) = (x, gn(x, y), gn+1(x, y))

we associate map-germs Gk(s,m) : Kn+s−1, 0 → K2(m+s−1) whose component functions

define the closure of Ak(s,m) := A(k1,...,ks) ⊂ Kn+s−1, m =
∑

i ki, ki ≥ 0. For corank-1

germs we can identify the Kn+s−1 with coordinates x, y, ǫ2, . . . , ǫs with the space (Kn)s

of s-fold points in the source (x, y1), . . . , (x, ys), whose f -images coincide, by setting

y1 = y, y2 = y + ǫ2, . . . , ys = y + ǫ2 + ǫ3 + . . . + ǫs.

For r = n, n + 1 set

g
(i)
r,1 := ∂igr/∂yi, i ≥ 1

and define by iteration for j = 1, . . . , s − 1

g
(0)
r,j+1 :=

∑

α≥kj+1

g
(α)
r,j ǫ

α−kj−1
j+1 /α!, g

(i)
r,j+1 := ∂ig

(0)
r,j+1/∂ǫi

j+1, i ≥ 1.

Then the component functions G1, . . . , G2(m+s−1) of Gk(s,m) are given (in this order) by

g
(1)
n,1, . . . , g

(k1)
n,1 ; g

(0)
n,j, . . . , g

(kj)
n,j (j = 2, . . . , s)

g
(1)
n+1,1, . . . , g

(k1)
n+1,1; g

(0)
n+1,j , . . . , g

(kj)
n+1,j (j = 2, . . . , s),

where {g
(1)
r,1 , . . . , g

(0)
r,1} denotes the empty set.

For 2(m + s − 1) = n + s − 1 the 0-sets of the Gk(s,m) are zero-dimensional, and

the corresponding 0-stable invariant rk(s,m)(f) of f is equal to the local multiplicity of

Gk(s,m) divided by an overcount factor c =
∏t

i=1(bi!) counting those permutations of the

s source points that permute subsets of bi points of the same type Aki
, s =

∑t
i=1 bi. The

following facts will be useful.

First, if c = 1 and f is adjacent to g (over R) with rk(s,m)(f)− rk(s,m)(g) = 1 then, in
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an origin-preserving deformation from f to g, one real Ak(s,m)-point splits off the origin

(notice that for real maps f the imaginary Ak(s,m)-points in the source occur in conjugate

pairs). If one can show that all A-simple germs f are adjacent to some germ g whose

0-stable invariants differ from that of f by at most one then one can inductively split off

real 0-stable points (with c = 1) one by one. This was the main strategy in constructing

M-deformations of equidimensional map-germs in [29]. We shall see that this strategy

also works for A-simple germs from Rn to Rn+1 for even n ≥ 6 and for odd n = 2l + 1

and l. For odd n = 2l + 1 with l even some more work is required (due to the presence

of 0-stable invariants with c > 1).

Second, if f is weighted homogeneous (or is the weighted homogeneous initial part of a

semi-quasihomogeneous germ) with weights w1, . . . , wn and weighted degrees δ1, . . . , δn+1

then Gk(s,m) is weighted homogeneous with weights w1, . . . , wn, . . . , wn (i.e. giving the

extra variables ǫi the weight wn = wt(y)) and weighted degrees

δn − iwn, i = 1, . . . , m + s − 1; δn+1 − iwn, i = 1, . . . , m + s − 1,

hence (using the generalized Bezout formula):

rk(s,m)(f) =

∏m+s−1
i=1 (δn − iwn)(δn+1 − iwn)

cws
n

∏n−1
j=1 wj

.

Finally, notice that (by a result of Mather) f is stable if the Gk(s,m) are submersive

(then the multi-jet extension of f is transverse to the K-classes Ak(s,m) in the space of

multi-jets of sufficiently high order). Here we consider all k(s, m) with m + s ≤ mf (0)

[27], and we let Bk(s,m) denote the set of parameters of an unfolding F of f for which

the induced unfolding of Gk(s,m) is non-submersive at some point (x, y, ǫ2, . . . ǫs). Using

the sets Bk(s,m) we can determine the codimension-1 components of the bifurcation set

of f in an efficient way (without having to know the Ae-codimension-1 classification of

multi-germs). This will be used to show that in dimensions (4, 5) there are A-simple

corank-1 germs without an M-deformation.

4. Proofs

Proposition 4·1. Let f : Kn, 0 → Kn+1, 0 be a corank-1 A-finitely determined germ.

Suppose that the A-orbit of f is open in its K-orbit. Then mf (0) ≤ [n/2] + 2.

Proof. Our first proof of this statement made use of the necessary and sufficient con-

dition for the openness of an A-orbit in its K-orbit in Theorem 5.1 of [31] (see also

Proposition 4.6 and the proof of Lemma 4.5 in [29]). Alternatively, we can use the count-

ing technique from Section 3·1, as follows.

For even source dimension n = 2l ≥ 6 Proposition 4·2 below improves the statement

that Al+2 does not contain open A-orbits to Al+1 (using the counting technique). For

n = 4 we do have an open A-orbit in A3, but there is no such open A-orbit in A4, because

all A6-orbits in A4 lie in the closure of the bi-modal A6-orbit of

(x1, x2, x3, x1y + x3y
3 + y5 + αy6, x2y + x3y

2 + x1y
4 + βy6).

The result therefore follows if we can show that for odd n = 2l + 1 there is no open

A-orbit in Al+2.

Initially using complete transversal by degree (see [4]) and Mather’s lemma (up to
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degree l + 3) we find the following “best possible” (l + 3)-jet in Al+2

g = (x, x1y + . . . + xly
l + yl+3, xl+1y + . . . + x2ly

l),

which is weighted homogeneous for the non-unique choice of weights given by w = (l +

2, l + 1, . . . , 3, l + 2, l + 1, . . . , 3, 1). The weighted degree 1 complete transversal for g is

generated by yl+4 · e2l+2, and the “best possible” filtration-1 jet in Al+2 is that of

f = (x, x1y + . . . + xly
l + yl+3, xl+1y + . . . + x2ly

l + yl+4).

Changing weights to w = (l +2, l +1, . . . , 3, l +3, l +2, . . . , 4, 1) we see that f is weighted

homogeneous (but now the weights are essentially unique). The map γ0(f) is surjective,

its kernel is 1-dimensional and we then apply the counting argument described in 3·1.

For s = 1, 2 there are no relations from the Cp-module generated by e(f). Cancelling

direct summands Hi := Hi
n−1 in the source and target of γ1(f) we see that in the target

(θf )1 two H3 and one H4 summand remain, while three H0 summands remain in the

source, and 2 dimH3 + dimH4 − 3 dimH0 = 2 + 2 − 3. Hence dim(θf )1/imγ1(f) ≥ 1.

For s = 2, two H4 and one H5 summand remain in the target, and three H0 summands

in the source, hence 2 dimH4 + dim H5 − 3 dimH0 = 4 + 2− 3 and dim(θf )2/imγ2(f) ≥

3. If dim(θf )1/imγ1(f) = 1 then the kernel dimension of γ1(f) is zero, in which case

dim(θf )2/imγ2(f) ≥ 3 implies tri-modality at filtration 2. For dim(θf )1/imγ1(f) ≥ 2

there is already a modulus at filtration 1.

It follows from the classifications in [20] and [15] that all A-simple corank-1 germs in

dimensions (2, 3) and (3, 4) have an M-deformation (see the concluding remarks in [29]).

In Section 4·1 we consider corank-1 germs in dimensions (n, n + 1) for even n ≥ 6, in

Section 4·2 those for odd n ≥ 5 and the remaining n = 4 case is dealt with in Section

4·3.

4·1. Even source dimensions n ≥ 6

For even source dimensions n ≥ 6 we can improve the above bound on the local

multiplicity as follows.

Proposition 4·2. Consider germs f : K2l, 0 → K2l+1, 0 of even source dimension

n := 2l ≥ 6. There are no open A-orbits in Al+1.

Proof. Using complete transversals, one shows that the “best possible” Al+4-orbit in

Al+1 has the representative

f := (x, yl+2 + x1y + . . . + xl−1y
l−1, yl+4 + xly + . . . + x2l−1y

l),

which is weighted-homogeneous for w = (l+1, l, . . . , 3, l+3, l+2, . . . , 4, 1). The map γ0(f)

is surjective and its kernel is 1-dimensional, and for s = 1, 2 there are no relations from

the Cp-module generated by e(f). Cancelling direct summands H i := Hi
n−1 in the source

and target of γ1(f) we see that in the target (θf )1 one H3 and one H4 summand remain,

while two H0 summands remain in the source, and dim H3+dimH4−2 dimH0 = 1+2−2.

Hence dim(θf )1/imγ1(f) ≥ 1. For s = 2 one H4 and one H5 summand remain in the

target, and three H0 summands in the source, hence dim H4 + dimH5 − 3 dimH0 =

2+ 2− 3 and dim(θf )2/imγ2(f) ≥ 1. If dim(θf )1/imγ1(f) = 1 then the kernel dimension

of γ1(f) is zero, in which case dim(θf )2/imγ2(f) ≥ 1 implies that there is a modulus at

filtration 2. For dim(θf )1/imγ1(f) ≥ 2 there is already a modulus at filtration 1.
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Notice that the above argument fails for l = 2. For l = 2 we have that 2(l + 2) = l + 6,

which gives an extra H0 term in B8 ∼= X2lH
4⊕X2

2lH
0. And, in fact, for l = 2 the K-orbit

Al+1 contains A-simple orbits, as we shall see later.

For germs f of local multiplicity l + 1 there is only one 0-stable invariant, namely

r(l)(f). We then have the following

Proposition 4·3. A corank-1 germ f : K2l, 0 → K2l+1, 0 with mf (0) = l + 1 is

A-simple if and only if the corresponding map G(l) : K2l, 0 → K2l, 0 is K-simple. Now

consider K = R: for each real K-simple G(l) there is a real deformation Gt
(l) of G0

(l) = G(l)

with mG(l)
(0) real points in the fibre (Gt

(l))
−1(p) for some p near 0, and these points

correspond to real A(l)-points in a deformation f t of f induced by Gt
(l).

Proof. The argument here is analogous to that for multiplicity n+1 germs from n-space

to n-space (see [29]). Consider the pre-normal form

f = (x, yl+1 + P1(x)y + . . . + Pl−1(x)yl−1, Pl(x)y + . . . + P2l−1(x)yl + R(x, y)yl+1),

then G(l) is (up to a suspension) K-equivalent to the map-germ P = (P1, . . . , P2l−1) :

K2l−1, 0 → K2l−1, 0. The K-simplicity of the Gk(s,m) in general follows from the A-

simplicity of f (see [27]), and the implication G(l) not K-simple =⇒ f not A-simple

follows from the fact that we can lift a deformation P t of the above map P to a defor-

mation f t of f (as in Lemma 4.7 of [29]). The remaining statements then follow from

Lemmas 3.2 and 4.8 in [29].

Remark 4·4. In the proof of Lemma 4.8 in [29] it was stated that there is no complete

published reference for the K-classification and the adjacencies of simple real equidi-

mensional germs. However, Chapter 8 of [23] contains a very extensive classification of

K-orbits and their adjacencies, which in particular include the adjacencies that are re-

quired to show that each K-simple germ f can be deformed to another germ g such that

mf (0) − mg(0) ≤ 1 (the notation in [23] for the K-classes differs from that in [29], the

latter uses a combination of Giusti’s and Mather’s notation).

4·2. Odd source dimensions n ≥ 5

Proposition 4·5. The K-orbit Al+1 of corank-1 map-germs K2l+1, 0 → K2l+2, 0, l ≥

2, contains two types of A-orbits: those that are Al+2-equivalent to

f̃ := (x, yl+2 + x1y + . . . + xly
l, xl+1y + . . . + x2ly

l)

or to

f ′ := (x, yl+2 + x1y + . . . + xly
l, xl+1y + . . . + x2l−1y

l−1 + x2ly
l+1 + yl+2),

and those that lie in the closure of the A-orbit of

f := (x, yl+2 + x1y + . . . + xly
l, xl+1y + . . . + x2l−1y

l−1 + x2ly
l+1 + yl+3),

and the latter have A-modality at least one.

Proof. Using complete transversals and Mather’s lemma, one shows that the germs

with (l + 2)-jet equivalent to f̃ or f ′ are the only ones that do not lie in the closure of

A · f , and f is weighted-homogeneous for w = (l + 1, l, . . . , 2, l + 2, l + 1, . . . , 4, 2, 1). The

map γ0(f) is surjective and its kernel is 1-dimensional. For s = 1 we have no relation

coming from e(f), and cancelling direct summands H i := Hi
n−1 in the source and target
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of γ1(f) we see that for l ≥ 3 there remains one H4 summand in the target (θf )1, while

three H0 summands remain in the source, hence dim H4 − 3 dimH0 = 5 − 3. And for

l = 2 we find dimH4 − 2 dimH0 = 4 − 2. In both cases we conclude that f is at least

uni-modal.

Hence we have to consider the map-germs f and f ′ further.

Proposition 4·6. Set

fl+i := (x, yl+2 + x1y + . . . + xly
l, xl+1y + . . . + x2ly

l + yl+i), l ≥ 2.

(i) The Ae-codimension-1 germ fl+3 is simple, (l +3)-determined and has the 0-stable

invariants

r(l−i,i)(fl+3) = 2, 0 ≤ i < l/2, and for even l, r(l/2,l/2)(fl+3) = 1.

(ii) The map-germ f ′ (in the notation of Prop. 4·5) lies in the closure of the A-orbit

of fl+3 and has the same 0-stable invariants as fl+3.

(iii) Any germ h with (l + 4)-jet equivalent to fl+4 has the 0-stable invariants

r(l−i,i)(h) = r(l−i,i)(fl+4) = 3, 0 ≤ i < l/2.

For odd l all the 0-stable invariants of h are therefore determined by its (l + 4)-jet fl+4.

(iv) For even l = 2m any germ with (l + 4)-jet equivalent to fl+4 is either at least

uni-modal or lies in the orbit of gk := fl+4 + xk−m−1
l yl+3 · e2l+2, for some k ≥ m + 2.

The gk have the additional invariant

r(l/2,l/2)(gk) = k − m

(the other 0-stable invariants are all equal to three, see (iii) above).

(v) The remaining germs (i.e. those not of type fl+i, i = 3, 4, and f ′) lie in the closure

of the Al+5-orbit of fl+5 + axly
l+3 · e2l+2 and are at least uni-modal.

Proof. In part (i) the determinacy and the codimension follow from standard calcula-

tions, and since fl+3 is weighted homogeneous and A-finite we obtain the invariants from

the formula in Section 3·2. (And the Ae-codimension-1 germ fl+3 is simple, because it is

adjacent only to stable corank-1 germs, which are simple.)

In part (ii) we obtain the adjacency [f ′] → [fl+3] from the obvious deformation. The

0-stable invariants of f ′ can either be calculated directly, alternatively one can check that

f ′ is A-finite and apply the formula in Section 3·2 to the weighted homogeneous germ

f ′.

For part (iii) we use the definition of the maps G(l−i,i) : Kn+1, 0 → Kn+1, n = 2l + 1,

associated with h = fl+4 + H (H of higher filtration) in Section 3·2, which for i < l/2

turn out to be semi-quasihomogeneous with K-finite initial part the G(l−i,i) determined

by fl+4. (Notice that we do not know a priori that this initial part is K-finite, otherwise

we could obtain the invariants from the formula in Section 3·2.) Let ǫ := ǫ2 and consider

the G(l−i,i) = (G1, . . . , G2l+2) associated with fl+4: the interesting component functions

are the (l + 1)st and the last (the other component functions are simply Gj = cjxj + q,

j = 1, . . . , l and Gj = cjxj−1 + q, j = l + 2, . . . , 2l + 1, where cj 6= 0 and q ∈ M2). The

yl+2 term in fl+4 yields Gl+1 = i!((l + 2)y + (i + 1)ǫ) and the yl+4 term yields a cubic

form G2l+2(y, ǫ), which after a linear coordinate change eliminating the y term from Gl+1
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becomes

−
(l + 2)(2i − l)(i − 1 − l)i!

3(i + 1)2
y3.

For i < l/2 the y3 coefficient is non-zero (in fact, negative), hence G(l−i,i) ∼K (x, ǫ, y3)

and all the invariants are three, as desired.
For part (iv), notice that for even l = 2m and i = l/2 the y3 coefficient vanishes.

In fact, the linear right coordinate change ǫ 7→ ǫ − 2y that eliminates for i = m the

y term from the component function Gl+1 of G(m,m) makes G(m,m) even in y, for any

h = fl+4 + H · e2l+2, where H has positive filtration with respect to the weights w =

(l + 1, l, . . . , 2, l + 3, l + 2, . . . , 4, 1) of fl+4. We claim that for any H of even weighted

degree the corresponding map G(m,m) is K-equivalent to (x, ǫ, 0): first, notice that by

right coordinate changes all the component functions of G(m,m) – except Gl+1 = ǫ and

G2l+2 – reduce to xj + cjy
wt(xj), where cj = 0 for odd wt(xj) (recall that G(m,m) is even

in y). And any monomial vector M · e2l+2 of even weight either contains an even power

of y (corresponding to an odd power of y in G(m,m)) or some power of some xj of odd

weight. Such a monomial vector therefore gives a term in G2l+2 that reduces to zero (up

to K-equivalence).
Next, we claim that the odd weight monomial vector xk−m−1

l yl+3 · e2l+2, k ≥ m + 2,

makes the corresponding G(m,m) K-equivalent to (x, ǫ, y2(k−m)). We have (after the right

change ǫ 7→ ǫ − 2y) Gl = (m − 1)!(xl + (m + 1)y2) and G2l+2 = (m + 1)!xk−m−1
l y2, so

we get a y2(k−m) term (with non-zero coefficient) in G2l+2 if we eliminate the y2 term in

Gl. So the invariant r(m,m)(gk) of the deformation gk of fl+4 by the above monomial is

k − m, as desired.
To conclude the proof of part (iv), we observe that γ0(fl+4) is surjective and its 1-

dimensional kernel is generated by (Ew, Eδ). If all the even weighted transversals for fl+4

are empty and all transversals of odd weight 2(k −m− 1)− 1, k ≥ m + 2, are generated

by the single elements xk−m−1
l yl+3 · e2l+2 and if gk is A-sufficient then the members of

the series gk completely classify the A-finite orbits over the (l + 4)-jet fl+4 (or if the gk

are A-sufficient for all k ≤ K then we have a “partial series” up to K). The remaining

possibilities lead to orbits that are not A-simple: (a) if some even 2r-transversal is non-

empty then we either have a modulus at filtration 2r (if the transversal is generated by

two or more elements) or at the filtration 2r + 1 level (from G(m,m) we know that the

2r +1 transversal will be non-empty); (b) if the odd 2r +1 transversals are generated by

more than one element we have at least one modulus at this filtration; finally (c) if some

gk is not A-sufficient then some higher filtration transversal will be non-empty, giving a

modulus at this higher level.
Finally, for part (v) consider the Al+5-orbits of the family of germs (parameterized by

a and b)

h := (x, yl+2 + x1y + . . . + xly
l, xl+1y + . . . + x2ly

l + axly
l+3 + byl+5), l ≥ 2,

whose closures contain the “remaining orbits” in this proposition (i.e. those not of type

fl+i, i = 3, 4, and f ′). Notice that h is weighted-homogeneous for w = (l + 1, l, . . . , 2, l +

4, l + 3, . . . , 5, 1). Cancelling direct summands H i we get c0 = dim H4 − dim H0 = 1 (for

l ≥ 3) and c0 = dim H4 = 1 (for l = 2), which implies that the map γ0(f) fails to be

surjective. Hence we have at least one modulus at weighted degree zero. (In fact, there

is exactly one modulus at weighted degree zero, see the normal form in the statement of

part (v)).
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Proposition 4·7. Now consider real map-germs f : R2l+1, 0 → R2l+2, 0, l ≥ 2, in

Al+1, and let fl+i, f ′ and gk be defined as in the previous proposition.

(i) fl+3 + t · yl+1 · e2l+2, t < 0, is an M-deformation of fl+3. And f ′ can be deformed

to fl+3 by an origin preserving deformation such that all 0-stable invariants remain

constant, hence f ′ has an M-deformation as well.

(ii) Any h with (l+4)-jet equivalent to fl+4 can be deformed to fl+3 such that one real

point of each type A(l−i,i), 0 ≤ i < l/2, splits off the origin. For odd l all such h have

therefore an M-deformation.

(iii) For even l = 2m, we can deform each gk, k > m + 2, to gk−1 such that one

real A(m,m)-point splits off the origin (and such that the remaining invariants remain

constant). Finally, we deform gm+2 to fl+3 in such a way that one real point of each

0-stable type A(l−i,i), 0 ≤ i ≤ m = l/2, splits off the origin. Hence all the gk have an

M-deformation as well.

Proof. For part (i) we look at the induced deformations Gt
(l−i,i) of the maps G(l−i,i)

associated with fl+3, where i < l/2 (for odd l) and i ≤ l/2 (for even l). After the right

change ǫ 7→ ǫ − l+2
i+1y that eliminates the y term from Gt

l+1 we have

Gt
2l+2 = i!

(

t +
(l + 2)(l − i + 1)

2(i + 1)
y2

)

.

The sign of the y2 term is positive for all i = 0, . . . , l/2, hence f t, t < 0, has two real

singular points of each type A(l−i,i), i < l/2, and (for even l) one additional real A(l/2,l/2)

point in the target (coming from a pair of real Al/2 points in the source).

For part (ii) we take the obvious origin-preserving deformation from h to fl+3, the

remaining statements follow from Lemma 3.2 in [29].

For part (iii) the required deformations are also obvious, but we have to choose the ap-

propriate sign for the deformation parameter t to ensure that the A(m,m) points splitting

off the origin are real.

4·3. Source dimension n = 4

We know already that for even source dimensions n = 2l all the A-simple germs of

multiplicity l + 1 have an M-deformation. But for n = 4 there are A-simple orbits of

multiplicity 4.

Proposition 4·8. The open A-orbit in A3 has the representative

f = (x1, x2, x3, y
4 + x1y, y6 + y7 + x2y + x3y

2),

is A-simple and has Ae-codimension two. The 0-stable invariants of f are r(1,0,0)(f) = 3

and r(2)(f) = 2. The bifurcation set of f in the parameter (u, v)-plane (the unfolding is

given in the proof below) is homeomorphic to the union of the v-axis, the non-positive

part of the u-axis and the cuspidal curve 8u3 +27v2 = 0 and divides the parameter plane

into 5 connected regions (see Figure 1). The numbers of real A(1,0,0)- and A(2)-points in

these regions are 2/2 (in regions II and III), 0/2 (in regions I and IV) and 0/0 (in region

V). Hence there is no M-deformation for f .
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I

IV

II

III

V

Figure 1: The (topological) bifurcation set B(f)

Proof. One checks that f0 = (x1, x2, x3, y
4 + x1y, y6 + x2y + x3y

2) is 7-determined

and that ft = f0 + ty7 · e5 is a C0-A-trivial deformation from f0 to f = f1 (for the

7-determinacy we use the techniques described in [3], and note that a deformation of an

A-finite weighted homogeneous map-germ f0 by a term of positive weight is topologi-

cally trivial, see [6]). By Damon’s duality criterion ([7], Theorem 5) the negative versal

unfolding

F = (u, v, x, y4 + x1y + uy2, y6 + x2y + x3y
2 + vy3)

is a C0-Ae-versal unfolding of f0, hence the bifurcation sets B(f) and B(f0) are homeo-

morphic. (Here B(f) and B(f0) are the bifurcation sets for the versal unfolding of f and

the negative versal unfolding of f0, respectively, both given by deforming by uy2 and vy3

in the nth and n+1st component.) The bifurcation set B(f0) is the union of sets Bk(s,m)

consisting of (u, v) for which Gk(s,m) is non-submersive for some (x, y, ǫ2, . . . , ǫs) (corre-

sponding to the s-tuple of source points (x, y), (x, y+ǫ2), . . . , (x, y+ǫ2+. . .+ǫs)). The map

Gk(s,m) defines the closure of the Ak(s,m) set in the source, and we only have to consider

“partitions” k(s, m) with m+ s ≤ mf0(0) = 4 and k(s, m) 6= (0) (see [27]). Furthermore,

we can discard K-classes Ak(s,m) that do not contain s-germs of Ae-codimension less than

two. The remaining Ak(s,m) can be further reduced using the inclusions

Ā(1) ⊂ Ā(0,0), Ā(2) ⊂ Ā(1,0) ⊂ Ā(0,0,0)

and

Ā(1,1) ∪ Ā(2,0) ⊂ Ā(1,0,0) ⊂ Ā(0,0,0,0)

obtained by intersecting the sets on the RHS of an inclusion with suitable strata of

the diagonal. For example, we have that G(1,0,0) = G(0,0,0,0)|ǫ2=0 and it is clear that

if G(1,0,0) is non-submersive for (u, v) then so is G(0,0,0,0) – hence the above inclusions

of sets Ak(s,m) yield corresponding inclusions of components Bk(s,m) of the bifurcation

set. Therefore it is sufficient to determine the three sets B(0,0), B(0,0,0) and B(0,0,0,0).

And clearly G(0,0) is a submersion for all (u, v). Hence it is enough to determine the sets

B(0,0,0) and B(0,0,0,0): B(0,0,0) = {u = 0} and in fact u = 0 is the B(2) subset of B(0,0,0).

And B(0,0,0,0) ⊂ {v(8u3 + 27v2) = 0}, more precisely B(0,0,0,0) = B(2,0) ∪ B(1,1), where

B(2,0) = {8u3 + 27v2 = 0} and B(1,1) = {v = 0, u ≤ 0}. Now one calculates the numbers

of real A(1,0,0)- and A(2)-points of F(u,v) at a point (u, v) in each of the five regions in

the complement of R2 \ B(f0). (For example, taking (u, v) = (1,−10) in region II we

find that the ideal generated by the component functions of G(1,0,0) has a standard basis

containing h := ǫ63−40ǫ43+32 and one linear equation for each of the remaining variables,

and h has 4 real and a pair of complex conjugate roots. Notice that c = 2, hence we get
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two real A(1,0,0) points. And a standard basis for the ideal generated by G(2) contains

3y2 − 5 and three linear equations for x1, x2, x3, hence we get two real A(2) points.)
Finally, note that f and f0 can (by the upper semi-continuity of r(2)(f) = r(2)(f0) = 2)

only be adjacent to some g with mg(0) = 3 for which the corresponding G(2) is of type

A0 or A1, and all such g are A-simple. Hence f and f0 are A-simple too.

Finally, we complete the proof of Proposition 2·2 by showing that the above germ f

(which does not have an M-deformation) also does not have a good real perturbation.

First, we require some definitions.

Let f : X → Y be a continuous mapping of topological spaces. For 1 ≤ k < ∞, denote

the k-fold multiple point space of f by

Dk(f) = closure{(x1, . . . , xk) ∈ Xk / f(x1) = . . . = f(xk), xi 6= xj if i 6= j}.

The symmetric group Sk acts on Dk(f) by permuting the factors. Thus Sk acts on

Hℓ(D
k(f); Q) by the permutation representation coming from the permutation action on

Dk(f). We denote the action of σ ∈ Sk by σ∗. Define the alternating complex

Altk Hℓ(D
k(f); Q) = {c ∈ Hℓ(D

k(f); Q) / ∀σ ∈ Sk, σ∗. c = signσ. c}

Let f : Cn, 0 → Cn+1, 0 be a map-germ of corank-1 and ft : Ut → Cn+1 a stable

perturbation of f . If f is A-finitely determined then for 2 ≤ k ≤ n + 1, Dk(f) is an ICIS

of dimension n + 1 − k. If t lies in the complement of the bifurcation set of f , Dk(ft) is

smooth and is a Milnor fibre for Dk(f). Then for each k, Dk(ft) has the homotopy type

of a wedge of spheres of middle dimension ([12]).

Let Yt be the image of ft. It follows from Theorem 2.6 of [9] that

Hn(Yt; Q) ∼=

n+1
⊕

k=2

Altk Hn+1−k(Dk(ft); Q)

The rank of Hn(Yt; Q) is called the image Milnor number of f , µI(f).

Suppose that g : Rn, 0 → Rn+1, 0 is a real analytic map-germ of finite Ae-codimension,

with a stable perturbation gt. Suppose also that the complexification gC,t of gt is a stable

perturbation of the complexification gC of g. We say that gt is a good real perturbation of

g if rankHn(Yt; Q) = rankHn(YC,t; Q) where Yt is the image of gt and YC,t is the image

of gC,t.

Let f : K4, 0 → K5, 0 as in Proposition 4·8,

f = (x1, x2, x3, y
4 + x1y, y6 + y7 + x2y + x3y

2).

A stable perturbation of f is given by

ft = (x1, x2, x3, y
4 + x1y + u(t)y2, y6 + y7 + x2y + x3y

2 + v(t)y3)

where, for t 6= 0, the path (u(t), v(t)) lies in the complement of the bifurcation set of f .

The defining equations of the sets Dk(ft) can either be obtained as in [20] (where these

sets are denoted by D̃k(ft)) or by composing the maps G(0,...,0) (k zeros), associated with

ft, with linear coordinate changes of the form (x, y1, . . . , yk) 7→ (x, y1, y2 − y1, . . . , yk −

yk−1). We have that (recall that x = (x1, x2, x3)):

• D2(ft) is a contractible smooth surface,
• D3(ft) ∼= {(x, y1, y2, y3) ∈ K6 / (y1 +y2)

2 +(y2 +y3)
2 +(y1 +y3)

2 +2u(t) = 0, x =

0},
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• D4(ft) ∼= {(x, y1, y2, y3, y4) ∈ K7 / x = 0, (y1+y2)
2+(y2+y3)

2+(y1+y3)
2+2u(t) =

0, (y1 + y2)(y2 + y3)(y1 + y3) − v(t) = 0, y1 + y2 + y3 + y4 = 0}

• D5(ft) is empty.

When K = C, applying Theorem 4.14 of [9], we have that µI(f) = 3. We can also

obtain this number applying Marar’s formulae for the Euler characteristic of Yt ([17]),

since χ(Yt) = 1 + µI(f).

Suppose K = R and (u(t), v(t)) in either region II or III in Figure 1. It is easy to see

that Alt3 H2(D
3(ft); Q) ∼= Q. On the other hand, D4(ft) has four real branches, each

one diffeomorphic to S1, and with the induced orientation from the ambient space they

generate H1(D
4(ft); Q). The sum of these classes generate Alt4 H1(D

4(ft); Q). Therefore

Alt4 H1(D
4(ft); Q) ∼= Q. So rankH4(Yt; Q) = 2 and therefore ft is not a good real

perturbation of f . Since this perturbation is the best possible, f does not have a good

real perturbation.

5. A-simple singular germs of minimal corank and M-deformations

Examples show that the conditions singular of minimal corank and A-simple are not

necessary for the existence of an M-deformation, but – prior to the counterexample in

dimensions (4, 5) in Proposition 4·8 – one could hope that these conditions are sufficient.

Notice that the map-germ f in Proposition 4·8 is open in its K-orbit A3 and that the

invariant r(1,0,0)(f) = 3 drops by three in any non-trivial deformation of f (because this

invariant must be zero for any germ of lower local multiplicity). The phenomenon that a

0-stable invariant drops by more than one in any non-trivial deformation of a given germ

can also be observed for germs of non-minimal corank that fail to have an M-deformation.

For example, any non-trivial deformation of the A-simple corank-2 germ II12,2 from the

plane to the plane in [28] decreases the double-fold number by two, and this germ does

not have an M-deformation.

Constructing deformations decreasing each 0-stable invariant by at most one is one of

the main techniques in constructing M-deformations. We conjecture that any A-simple

singular map-germ of minimal corank, which is not open in its K-orbit, can be deformed

to a germ of lower A-codimension and of the same local multiplicity such that all 0-

stable invariants drop by at most one. If this property holds – at least for a given pair

of dimensions (n, p) – then the existence of M-deformations can be shown by performing

multiplicity preserving deformations decreasing each 0-stable invariant by at most one

(splitting off stable singular points one by one and by showing that these points are real)

and by analyzing the remaining open A-orbits in each K-orbit (notice that the A-simple

corank-1 germ f without an M-deformation in dimensions (4, 5) is open in its K-orbit).

Outside the class of A-simple singular map-germs of minimal corank this property does

not hold in general: there are germs (that are not open in their K-orbit) for which such

local multiplicity preserving, non-trivial deformations in which all 0-stable invariants

decrease by at most one do not exist.

First, consider singular A-simple germs of non-minimal corank. For the corank-2 germs

in the series IIk2,2 in dimensions (2, 2) from [28] the double-fold numbers drop by at least

2 in any deformation and for k ≥ 2 the members of this series are not open in their

K-orbit (and none of the germs IIk2,2, k ≥ 1, has an M-deformation).

Finally, we observe that for singular germs of positive A-modality (and minimal corank)

again some 0-stable invariant can drop by more than 1 in any local multiplicity preserving
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deformation. For singular germs of minimal corank and constant local multiplicity a “gap”

for some 0-stable invariant i is (empirically) connected with a change of A-modality. Here

“gap” means the following: amongst the A-orbits of a given local multiplicity there are

some with i = c and some with i > c, but none with i = c + 1. For example, the possible

cusp numbers of corank-1 germs from the plane to the plane of local multiplicity 4 are

2, 3, 4, 6, . . . and as the cusp number jumps from 4 to 6 the A-modality increases from

0 to 1 (and any non-trivial deformation of a unimodal germ of type 19 in the notation

of [24], which has cusp number 6 and whose orbit lies at the boundary of the A-simple

germs, decreases the cusp number by at least 2).
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