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Abstract. We study the recognition ofA-classes of multi-germs in families of corank-
1 maps fromn-space inton-space. From these recognition conditions we deduce certain
geometric properties of bifurcation sets of such families of maps. As applications we give a
formula for the number ofAe-codimension-1 classes of corank-1 multi-germs fromC

n to
C

n and an upper bound for the number of stable projections of algebraic hypersurfaces in
R

n+1 into hyperplanes.

Introduction and notation

A smooth map (where smooth means eitherC∞ or analytic) is unstable if
it has positiveAe-codimension as ans-germ for some set of source points
x1, . . . , xs . We study the recognition of unstable maps in familiesF of
equidimensional corank-1 maps, both in the local situation whereF is an
unfolding germ and in the global situation whereF is the restriction of the
family of all (central or parallel) projections into hyperplanes to a smooth
hypersurface given as the zero-set of some smooth function. Using these
recognition conditions, we deduce certain local and global properties of the
bifurcation setB in the parameter space ofF .

Let F = (u, fu(x)) be a family of smooth mapsfu : F
n → F

p (where
F = C or R). In Section 1 we give an upper bounds(n, p) for the number
of source points (whenn < p) or non-submersive source points (when
n ≥ p) in f −1

u (y) for a “generic” pointu ∈ B (i.e. for a pointu ∈ B
in the complement of strata ofB that correspond to multi-germs ofAe-
codimension≥ 2). In Sections 2.1 and 2.2 we study the recognition of open
A-orbits withinK-orbits of typeAk1| . . . |Aks

for families of projections of
hypersurfaces and for general families of equidimensional corank-1 maps,
respectively. Using these conditions one shows that, for versal corank-1
familiesF , the closures of theAk1| . . . |Aks

strata are smooth submanifolds
of the source space ofF . Section 2.3 describes the recognition conditions
for s-germs of positiveAe-codimension, which define closed subsetsB̃(s)
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in the source space ofF . The union of the projections of thẽB(s), s =
1, . . . , s(n, n) = n+ 1, onto the parameter space ofF is the bifurcation set
B. The setsB̃(s), for s ≤ n, can be singular, but̃B(n+ 1) is always smooth.
Fors-germs fromF

n → F
p, wheren > p, the same conditions are valid for

p = 1 and 2; forp ≥ 3 there are additional unstables-germs that are not
recognized by these conditions (see Remark 1 at the beginning of Section 2).
Sections 3 and 4 contain applications of the recognition conditions in Section
2. In Section 3 it is shown that, for complex-analytic equidimensionals-
germs, there is exactly one connected orbit ofAe-codimension 1 in each
K-orbit of typeAk1| . . . |Aks

, 2 ≤ ∑
ki ≤ n + 1. From this we deduce that

there are
∑n

i=1 p(i + 1) (wherep(m) denotes the number of partitions of
m) Ae-classes of corank-1s-germs fromC

n to C
n of Ae-codimension equal

to one. Finally, in Section 4, we consider the special case of projections of
algebraic hypersurfacesM ⊂ F

n+1 into hyperplanes, and give bounds for
the degree ofB and, in the caseF = R, for the number of distinct stable
projections ofM in terms ofn andd := degM.

For the standard definitions of the (pseudo) groups of equivalencesAe

andKe of mono-germs and their tangent spaces, see, for example, the books
[GG] and [M] and the survey article on determinacy by Wall [Wa]. For
multi-germsf = {f1, . . . , fs} : F

n, S → F
p, f (S), we setθf := ⊕s

i=1 θfi

where theθfi
are, as usual, sections off ∗

i T F
p. Let Cni

, 1 ≤ i ≤ s denote
the local rings of smooth function germs at theith source point andCp the
local ring of smooth function germs at the target point, andmni

andmp

the corresponding maximal ideals. LetT Re · f := (tf1(θn1)| . . . |tfs(θns
)),

whereθn1, . . . , θns
areCni

-modules of germs of (independent) source vector
fields, denote the extended right tangent space andT Le · f := wf (θp) the
extended left tangent space (hereθp is theCp-module of germs of target
vector fields). TheAe-tangent space and codimension are then given by
T Ae ·f := T Re ·f +T Le ·f and cod(Ae, f ) := dimFθf /T Ae ·f . For the
(restricted) groups of source- and target-preserving equivalencesA, R etc.
one obtains analogous definitions of the tangent spaces and codimension by
multiplying by the appropriate maximal idealsmni

andmp. Given as-germ
f , there is an inclusionA · f ⊂ K · f of orbits that does not hold for the
orbits of the extended (pseudo) groupsAe andKe. We shall frequently refer
to the openA-orbit in a K-orbit of Ae-codimension 1, meaning that the
s-germs in thisA-orbit haveAe-codimension 1 (because we cannot refer to
the openAe-orbit in aKe-orbit).

1. A bound for the number of source points for a generic point ofB

The “complexity” of the bifurcation setB of a familyF of mapsf : F
n →

F
p depends on the number of unfolding parameters, onn and on the number
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s(n, p) which is defined as follows. (Here “complexity” refers, say, to the
Betti numbers ofB or, for real semi-algebraic bifurcation sets, to the number
of connected components in the complement ofB.) Forn < p, the number
s(n, p) is the maximals amongst thes-germsf = {f1, . . . , fs} : F

n, S →
F

p, f (S) of Ae-codimension no greater than one. Forn ≥ p, it is easy to see
that we can add submersion germsfi to a givens-germ (and hence increases)
without changing theAe-codimension.We therefore defines(n, p) as above,
with the restriction that the component germs off be non-submersive.

The bound fors(n, p) below is a corollary to the following formula
for theAe-codimension of ans-germ. Analogous formulas for mono-germs
(s = 1) for several groups of equivalences are given in Theorem 4.5.1 and
Proposition 4.5.2 of [Wa], and the proofs of these formulas (including the
one below) closely follow Mather’s proof of Theorem 2.5 in [MaIV]. (After
writing-up the proof below I found a reference to unpublished notes by
L. C. Wilson [Wi] which also contain a proof of this formula, but I do not
know whether his proof is different.) In [Ri96] there is also a related formula
for multi-germs having “mixed” source dimensions, but this is not needed
here.

Proposition 1. Let

f = {f1, . . . , fs} : F
n, S → F

p, f (S)

be ans-germ of finiteAe-codimension. Then

cod(Ae, f ) = max[0, cod(A, f ) + p(s − 1) − ns].
Proof. For stablef , cod(Ae, f ) = 0. Hence supposef unstable. In this
case the formula is equivalent to:

dimF

T Ae · f

T A · f
= ns + p.

This, in turn, is equivalent to the following: ifξi ∈ θni
, 1 ≤ i ≤ s, and

X ∈ θp are such that

(tf1(ξ1)| . . . |tfs(ξs)) + wf (X) ∈ T A · f := T R · f + T L · f

thenξi ∈ mni
· θni

, 1 ≤ i ≤ s, andX ∈ mp · θp. This condition fails if there
exist ξ̄i ∈ mni

· θni
, 1 ≤ i ≤ s, such that

(tf1(ξ1 − ξ̄1)| . . . |tfs(ξs − ξ̄s)) ∈ T Le · f.

Sinceξi − ξ̄i /∈ mni
· θni

we can, after a change of coordinates at the source
points, assume that for somei

ξi − ξ̄i = ∂/∂x1
i ,
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wherexi = (x1
i , . . . , xn

i ) are the coordinates of theith source point. This
means that thes-germsft at

x1, . . . , xi−1, xi + t · ∂/∂x1
i , xi+1, . . . , xs

areAe-equivalent for allt . But f = f0 is unstable, hence all theft are
unstable:f has therefore infiniteAe-codimension (by the Mather-Gaffney
criterion) which contradicts the hypothesis of the proposition.ut
Corollary 1. Let

s(n, p) := sup{s := |S| : ∃f : F
n, S → F

p, f (S) : cod(Ae, f ) ≤ 1},
where forn ≥ p all the component germsfi of f are non-submersive. Then
s(n, p) = p + 1 (for n ≥ p) ands(n, p) = bp+1

p−n
c (for n < p).

Proof. For n < p this follows directly from the formula for theAe-codi-
mension. Forn ≥ p, all component germsfi of f are non-submersive:
hence, by the corank product formula, theA-codimension off is at least
s(n − p + 1). ut

2. Recognizing unstable maps

Let f = {f1, . . . , fs} : F
n, S → F

n, f (S), S = {x1, . . . xs}, be ans-germ.
TheK-class off isAk1| . . . |Aks

if the ith component germfi of f has anAki

singularity atxi (i.e. a corank-1 singularity of multiplicitymi = ki + 1) and
f1(x1) = . . . = fs(xs). In the following two sections we describe recogni-
tion conditions for suchAk1| . . . |Aks

singularities that are well-behaved on
the diagonal, where two or more source points coalesce. In Section 2.1 we
consider the slightly more complicated case wheref is the restriction of the
projectionF

n+1 → H , whereH is some hyperplane, to some smooth hy-
persurfaceM. Section 2.2 contains the analogous recognition conditions for
general equidimensional corank-1 maps. Finally, in Section 2.3, we supple-
ment the conditions for anAk1| . . . |Aks

singularity by additional conditions –
the resulting set of conditions detectss-germs of positiveAe-codimension.
Using the conditions in Sections 2.2 and 2.3 we deduce some properties
of bifurcation sets and of the closures of theAk1| . . . |Aks

strata for versal
families of corank-1 maps.

Remark 1.The conditions in Sections 2.2 and 2.3 are also valid fors-germs
f : F

n → F
p, n > p, of K-typeAk1| . . . |Aks

. Using a “splitting lemma”
for maps, one checks that the component germsfi : F

p × F
n−p → F

p of
such anf are equivalent to

(x1, . . . , xn−1, g

(
x1, . . . , xn) +

n−p∑
j=1

±y2
j

)
, g(0, . . . , 0, xn) = xki+1

n .
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Settingf̃i := fi(x1, . . . , xn, 0, . . . , 0), we see that6fi
= 6f̃i

×{0}, 1fi
=

1f̃i
(where6 and1denote the critical set and the discriminant, respectively)

and cod(Ae, fi) = cod(Ae, f̃i). However, forp ≥ 3 there exist unstable
corank-1s-germs ofK-type different fromAk1| . . . |Aks

that are not detected
by the conditions described below.The first such unstable germf : F

4 → F
3

hasK-typeD4.

2.1. Families of projections of hypersurfaces

Let M := g−1(0) ⊂ F
n+1 be a hypersurface, and consider parallel (or

central) projections along the direction (or from the centre)ω into hyper-
planes. This yields a family of corank 1 maps fromFn into F

n with pa-
rameterω. The kernels of this family of projections are the families of rays
L(t) = p+t ·ω, wherep ∈ F

n+1 andω ∈ FP
n (or, for central projection with

centreω ∈ F
n+1\M,L(t) = p+t ·(ω−p)).All A-classes ofs-germs of this

family lie in someK-orbit Ak1| . . . |Aks
, and theK-orbit membership is de-

termined by the contact-orders ofM andL(t) at the pointsL(λi), 1 ≤ i ≤ s.
The straightforward conditions for contact order≥ m1, . . . ,≥ ms

K(i)(λj ) = 0, 0 ≤ i ≤ mj − 1, 1 ≤ j ≤ s, λ1 ≡ 0, (+)

whereK(t) := g ◦ L(t), are not well-behaved on the diagonal, where
L(λi) = L(λj ).

We now define “modified conditions”K(i)
j , which define the same zero-

set away from the diagonal, by iteration. Letεj+1 := λj+1 −λj andK
(i)
1 :=

∂iK/∂t i , then we set forj = 1, . . . , s − 1:

K
(0)
j+1 :=

∑
α≥mj

K
(α)
j ε

α−mj

j+1 /α!,

where, forj ≥ 2, K(i)
j := ∂iKj/∂εi

j . The modified set of conditions

K
(i)
j = 0, 0 ≤ i ≤ mj − 1, 1 ≤ j ≤ s, (∗)

defines a variety inFs−1 × F
n+1 × V, whereV = FP

n or F
n+1 and where

ε2, . . . , εs are coordinates inFs−1. Away from the “diagonal”, where one or
more consecutiveεjs vanish, this variety coincides with the zero-set of the
original set of equations obtained by substitutingλj = ∑j

i=2 εi , 2 ≤ j ≤ s

into (+). This is so because the modified equationsK
(i)
j , multiplied by some

suitable power ofεj , and the original equations generate the same ideal.
Further, notice that

K
(i)
j = c · K

(i+∑j−1
l=1 ml)

1 + R(ε2, . . . , εj , K
(m)
1 )



78 J. H. Rieger

wherec 6= 0 andm > i + ∑j−1
l=1 ml. Also note thatλi = λj , i < j , if and

only if
∑j

k=i+1 εk = 0, and in this case the required contact order atL(λi) =
L(λi+1) = . . . = L(λj ) is at least

∑j

k=i mk. The modified conditions are
therefore “additive” with respect to contact-order. The boundaries of the
s-local bifurcation sets made up of strata of type

Ak1| . . . |Aki
| . . . |Akj

| . . . |Aks

are therefore closed subsets of(s − j + i)-local bifurcation sets made up of
strata of type

Ak1| . . . |A(
∑j

r=i kr )+j−i
| . . . |Aks

.

(the strange index in the middle stems from the fact that anAk singularity
has contact-order, or multiplicity,k + 1).

Note that the conditions above are already sufficient to detect the openA-
orbits within a givenK-orbit. In order to detect unstables-germs contained
in A-orbits that are closed in their respectiveK-orbit the conditions have
to be supplemented by additional conditions (see Section 2.3). The number
of additional conditions is equal to the codimension of theA-orbit within a
givenK-orbit.

2.2. General families of corank 1 mapsF
n → F

n

Consider an unfoldingF = (u, f̄ (u, z)) of a corank 1 equidimensional
mapf (z) = f (0, z). We can assume that̄f is of the form(x1, . . . , xn−1,

g(u, x, y)), wherez = (x, y) are coordinates inFn. In order to recognize
an Ak1| . . . |Aks

singularity at(x, y1), . . . , (x, ys) we, again, define in an
iterative fashiong(i)

1 := ∂ig/∂yi
1 and forj = 1, . . . , s − 1:

g
(0)
j+1 :=

∑
α≥kj +1

g
(α)
j ε

α−kj −1
j+1 /α!,

whereεj+1 = yj+1 − yj andg
(i)
j+1 := ∂igj+1/∂εi

j+1. The conditions

g
(bj )

j = . . . = g
(kj )

j = 0, 1 ≤ j ≤ s, b1 = 1, b≥2 = 0 (∗∗)

then define the desireds-local stratum and are again “additive” (w.r.t. the
multiplicities of the component germs) on the diagonal. In fact, all the prop-
erties stated in the previous section hold withg

(i)
j in place ofK(i)

j .
For future reference we also state the corresponding “naive” conditions

(that have excess dimension on the diagonal):

g

(
x, y1 +

r∑
i=2

εi

)
= g(x, y1); g(α)

(
x, y1 +

j∑
i=1

εi

)
= 0, ε1 ≡ 0, (++)
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whereg(α) := ∂αg/∂yα and with the index ranges 2≤ r ≤ s, 1 ≤ α ≤ kj

and 1≤ j ≤ s.
Using the conditions(∗∗), it is straightforward to show the following.

Proposition 2. Let F : F
d × F

n → F
d × F

n be anAe-versal unfolding of
an s-germf of corank 1. Then the strata inFd × F

sn corresponding to the
closure of theAk1| . . . |Aks

-stratum are smooth submanifolds.

Proof. Setk := ∑s
j=1(kj + 1) and letW ⊂ J k(n + s − 1, n) denote the

Ak1| . . . |Aks
-stratum. The conditions(∗∗) above define the closurēW of W

and are all linear in some coordinate of the jet-space, and these coordinates
are pairwise distinct. The closurēW of theAk1| . . . |Aks

-stratum inJ k(n +
s−1, n) is therefore a smooth submanifold of codimension(

∑s
i=1 ki)+s−1.

Now note thatJ k(n + s − 1, n) and61[sJ k(n, n)] are isomorphic, and
the coordinate change

(x1, . . . , xn−1, y1, ε2, . . . , εs) 7→
(

x1, . . . , xn−1, y1, . . . , y1 +
s∑

j=2

εj

)

maps the submanifold̄W in the former jet-space diffeomorphically to a
submanifoldW̄ ′ in the latter jet-space. SinceF is versal, we can pull-back
W̄ ′ to a submanifold inFd × F

sn. ut
Remark 2.The smoothness of the closure of theAk1| . . . |Aks

stratum simpli-
fies certain arguments in [MMR], where formulas are given for the number
of isolated stable singularities appearing in a deformation of a weighted
homogeneous, complex corank-1 singularity.

2.3. The bifurcation set

A multi-germ of a corank-1 mapf : F
n → F

n is stable if and only if its
component germs are Morin singularities and it satisfies the normal cross-
ings condition (NC), see e.g. Theorem 6.4, p. 192, of [GG]. The stable
s-germs are precisely the openA-orbits in theK-orbits of typeAk1| . . . |Aks

,
for

∑
ki ≤ n + 1 ands ≤ n + 1. The unstables-germs can therefore be

characterized by the property that their jet-extensions (of the appropriate
order) fail to be transverse to some submanifold defined by the recogni-
tion conditions for the closure of one of theK-classesAk1| . . . |Aks

, where∑
ki ≤ n + 1 ands ≤ n + 1. Recall that the recognition conditions for

an Ak1| . . . |Aks
singularity in Sections 2.1 and 2.2 are conditions on the

k-jet, k = ∑s
i=1(ki + 1), of a functionK : F

n+s → F (with source coordi-
natesx1, . . . , xn+1, ε2, . . . , εs) or of a mapf : F

n+s−1 → F
n (with source
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coordinatesx1, . . . , xn−1, y1, ε2, . . . , εs), respectively. Hence we will con-
sider transversality to submanifolds inJ k(n + s, 1) or J k(n + s − 1, n),
respectively.

The conditions for the failure of transversality require some extra nota-
tion. Let

k(s, m) := (k1, . . . , ks), whereki ≥ ki+1, ks ≥ 1,
∑

ki = m

denote a partition ofm involving s non-zero summands, and letP(s, m)

be the set of all such partitions. LetAk(s,m) := Ak1| . . . |Aks
be theK-

class associated with such a partition, and letQk(s,m) : F
n+s → F

m+s and
Gk(s,m) : F

n+s−1 → F
m+s−1 denote the maps with component functions the

recognition conditions(∗) and(∗∗) for the closure of theAk(s,m)-stratum of
Sections 2.1 and 2.2, respectively.

Notice that the isolated stable singularities of ans-germ f from F
n

to F
n are the openA-orbits within theK-classesAk(s,n). All s-germs of

type Ak(s,n+1) are therefore unstable. Furthermore, the orbit through the
stable mono-germ(x1, . . . , xn−1, y

2) is the onlyAe-orbit in Ak(1,1). Hence
it is sufficient to find the conditions for the failure of transversality to the
submanifoldsAk(s,m), where 2≤ m ≤ n. We first consider the case of
parametrized corank-1 maps and then indicate the necessary changes in the
more complicated global case of projections of hypersurfaces.

For parametrized corank-1 maps the closure of theAk(s,m) stratum is
a submanifold inJ k(n + s − 1, n) of codimensionm + s − 1 which is
given as the zero-set of a regular mapϕ : J k(n + s − 1, n) → F

m+s−1.
Let Gk(m,s) = (G1, . . . , Gm+s−1) : F

n+s−1 → F
m+s−1 be the map whose

component functions are the recognition conditions(∗∗) of Section 2.2,
and letHk(m,s) be the corresponding map with the “naive” conditions(++)

as components. The mapHk(s,m) is the composition of the jet-extension
jkf with ϕ. Now, jkf fails to be transverse toϕ−1(0) at q if and only if
Hk(s,m) fails to be a submersion atq. It is easy to see thatHk(s,m) fails to
be a submersion at source points belonging to the closure ofAk(s,m+1), but
we are only interested in the failure of transversality to the properAk(s,m)

stratum. LettingĤk(s,m) denote the map defined by omitting thes maximal
derivative conditionsg(kj )(pj ) = 0, 1 ≤ j ≤ s, from (++) anddxĤk(s,m)

its differential with respect tox1, . . . , xn−1, and restricting to theAk(s,m)

stratum, we see thatdxĤk(s,m) has maximal rank if and only ifdHk(s,m) has.

However,dxĤk(s,m) is not well-behaved on the diagonal, where some
εj = 0: we have to add to certain columns appropriate linear combinations
of others and divide by powers ofεj . The resulting matrix is the differential,
dxH̄k(s,m), of a mapH̄k(s,m), whose component functions are again defined
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by iteration: setg(i)
1 := ∂ig/∂yi

1, for 0 ≤ i < k1, and forj = 2, . . . , s set

g
(0)
j :=

∑
α≥kj

g
(α)
j−1ε

α−kj

j /α!; g
(i)
j := ∂ig

(0)
j /∂εi

j , 1 ≤ i < kj .

Notice that, away form the diagonal,H̄k(s,m) := (H̄1, . . . , H̄m−1)andĤk(s,m)

define the same ideal. Setρ := ∑m−1
i=1 viH̄i , where(v1 : . . . : vm−1) ∈

FP
m−2, then the component functions of the map

Ḡk(s,m) := (Ḡ1, . . . , Ḡn−m+1) : F
n+s−1 → F

n−m+1,

which are defined by eliminating thevi between the functions∂ρ/∂xj (1 ≤
j ≤ n − 1), vanish if and only ifH̄ (and henceGk(s,m)) fails to be a
submersion. HencēGk(s,m) is the desired condition for the non-transversality
to Ak(s,m) in the case of parametrized corank-1 maps.

For projections of hypersurfaces, the closure of theAk(s,m) stratum is a
submanifold inJ k(n + s, 1) of codimensionm + s. The recognition con-
ditions(∗) and(+) of Section 2.1 define mapsQk(s,m) = (Q1, . . . , Qm+s)

andKk(s,m) = (K1, . . . , Km+s) in the variablesxi (1 ≤ i ≤ n + 1), εj

(2 ≤ j ≤ s), recall thatεj+1 := λj+1 − λj andλ1 ≡ 0. We now follow the
same procedure as in the case of parametrized corank-1 maps, withKk(s,m)

in place ofHk(s,m). Remove again the highest derivative conditions at the
s source points and let̄Kk(s,m) be the map, whosem component functions
are defined as follows. Set̄K(i)

1 := ∂iK/∂t i , for 0 ≤ i < k1, and for
j = 2, . . . , s set

K̄
(0)
j :=

∑
α≥kj−1

K̄
(α)
j−1ε

α−kj−1
j /α!; K̄

(i)
j := ∂iK̄

(0)
j /∂εi

j , 1 ≤ i < kj .

Let ` := ω (for parallel projection) or̀ := ω − x (for central projection).
If ` is the kernel direction of the projection then, at anAk(s,m) singularity,
dxK̄

(i)
j (`) = 0 for 0 ≤ i < kj , 1 ≤ j ≤ s but dxK̄

(k1)
1 (`) 6= 0. Let

e1, . . . , en be a basis for{x ∈ F
n+1 : 〈x, `〉 = 0} and setρ := ∑m

i=1 viK̄i ,
where(v1 : . . . : vm) ∈ FP

m−1. The component functions of the map

Q̄k(s,m) := (Q̄1, . . . , Q̄n−m+1) : F
n+s → F

n−m+1,

which are defined by eliminating thevi between the functionsdxρ(ej )

(1 ≤ j ≤ n), vanish if and only if the restriction ofQk(s,m) to theAk(s,m)

stratum fails to be submersive – they therefore represent the desired non-
transversality conditions toAk(s,m) for projections of hypersurfaces.

The unstables-germs in families of projections of hypersurfaces, where
the parameter spaceV is eitherFn+1 (for central projection) orFP

n (for
parallel projection), or in generald-parameter families of corank-1 maps
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from F
n to F

n are then characterized as follows. For 1≤ s ≤ n and 2≤
m ≤ n, let B̃k(s,m) be the zero-set of one of the following maps:

(Qk(s,m), Q̄k(s,m)) : V × F
n+s → F

n+s+1

(for families of projections) or

(Gk(s,m), Ḡk(s,m)) : F
d × F

n+s−1 → F
n+s

(for generald-parameter families). And set

B̃(s) :=
n⋃

m=2

⋃
k(s,m)∈P(s,m)

B̃k(s,m).

And for s = n + 1, we setB̃(n + 1) := Q−1
k(n+1,n+1)(0) or G−1

k(n+1,n+1)(0). In

other words,B̃(n+1) is the closure of theA1| . . . |A1-stratum (n+1A1s). Let,
in both cases,π denote the projection onto the parameter space: thenB(s) :=
π(B̃(s)) is the closure of thes-local bifurcation set andB := ⋃n+1

s=1 B(s) the
full bifurcation set (notice that, by Corollary 1,s(n, n) = n + 1).

Remark 3.Whenn = 2 the above conditions for an unstables-germ are
equivalent to the presence of an isolated stable singularity of higher multi-
plicity. In dimensionn = 2 there are two isolated stables-germs, namely
Whitney cusps and transverse double-folds. They represent the openA-
orbits inA2 and inA1|A1, respectively. The cusp and double-fold multiplic-
ities of a map-germf of the plane, denoted byc(f ) andd(f ) in [Ri87], char-
acterize the unstable germs:f is unstable if and only ifc(f ) ≥ 2 ord(f ) ≥
2. Forn ≥ 3 this is no longer true: the mono-germ(x, y, z3+(x2+y2)z) has
Ae-codimension one, but the multiplicities of the isolated stable singularities
A3, A2|A1 andA1|A1|A1 are all zero.

A natural question concerning the setsB̃(s) is the following: given anAe-
versal family of corank-1 mapsF : F

d ×F
n → F

d ×F
n, are the sets̃B(s) ⊂

F
d × F

n+s−1 smooth submanifolds? For the setB̃(n + 1) the smoothness
follows from Proposition 2. But for the other sets̃B(s), 1 ≤ s ≤ n, this
turns out to be false: the componentsB̃k(s,m) have non-empty intersection.
In dimension two, however, the componentsB̃k(s,m) themselves are smooth
(as we will show next); in dimensionn ≥ 3 we suspect that thẽBk(s,m),
wherem < n + 1, fail to be smooth (at least the corresponding strata in
jet-space are singular, see the proof of Proposition 5).

Now consider the geometry of bifurcation sets in the particular case
n = 2. There are fiveAe-codimension-1 singularities (overC): (i) (x, y3 +
x2y), (ii) (x, xy + y4), (iii) {(x, y2), (y2, x), (x, x + y2)}, (iv) {(x, xy +
y3), (y2, x)} and (v) {(x, y2), (x, x2 + y2)}. The openA-orbits in A3,
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A1|A1|A1 and A2|A1 are (ii), (iii) and (iv), respectively, and the closed
codimension-1 orbits withinA2 andA1|A1 are (i) and (v), respectively. The
partitionsk(s, m) appearing in the indices of the setsB̃k(s,m) correspond-
ing to the closures of theAe-classes (i) to (v) above are given by(2), (3),
(1, 1, 1), (2, 1) and(1, 1), respectively. Then

B̃(1) = B̃(2) ∪ B̃(3), B̃(2) = B̃(2,1) ∪ B̃(1,1)

andB̃(3) = B̃(1,1,1).

Proposition 3. Let F : F
d × F

2 → F
d × F

2 be anAe-versal family of
corank-1 maps of the plane. (i) Then the five setsB̃k(s,m) ⊂ F

d × F
n+s−1

defined above are smooth submanifolds of dimensiond − 1 (or are empty).
(ii) The pairs of components̃B(2), B̃(3) ⊂ B̃(1) and B̃(2,1), B̃(1,1) ⊂ B̃(2)

have non-empty intersections for an open set of familiesF .

Proof. (i) From the preceding discussion we know that the setsB̃(3), B̃(1,1,1),
B̃(2,1) correspond to openA-orbits in their respectiveK-orbit, hence they
are smooth by Proposition 2. ForB̃(2), we have to add the non-transversality
condition∂2g/∂x∂y1 = 0 to the conditions for anA2. For B̃(1,1), we sup-
plement the conditions(∗∗) in Section 2.2 for anA(1,1) bi-germ by

∑
i≥1

∂i+1g1

∂x∂yi
1

εi−1
2 /i! = 0,

which is the condition for the failure of transversality to theA(1,1) stratum.
(Geometrically this condition is equivalent to the linear dependence of

the (limiting) tangent lines of the discriminants of the twoA1 points. Notice
that the “naive” condition for the linear dependence of the (limiting) tangent
lines to the discriminant at the points(x, g1(x, y1)) and(x, g1(x, y1 + ε2),
given by∂g1(x, y1 + ε2)/∂x − ∂g1(x, y1)/∂x = 0, vanishes identically for
ε2 = 0. Also notice that

B̃(1,1) ∩ {ε2 = 0} = {∂2g1/∂x∂y1 = ∂ig1/∂y
i
1 = 0, 1 ≤ i ≤ 3},

the intersection of̃B(1,1) with the diagonal therefore corresponds to the clo-
sure of theA-class(x, xy2+y4+y5), i.e. type 115 in the notation of [Ri87].)

In both cases̃B(2) andB̃(1,1), the conditions(∗∗) and the additional con-
dition clearly define smooth submanifolds of the appropriate jet-space of
codimensionn + s. The pull-back of these submanifolds by a versal family
F yields submanifolds of dimensiond − 1 (or empty sets).

(ii) The defining conditions for the non-transverseA(2) stratum and the
A(3) stratum (and similarly for the non-transverseA(1,1) stratum and the
A(2,1) stratum) imply that these pairs of strata have non-empty intersectionI

in jet-space. To complete the proof of the assertion it is sufficient to construct
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examples of versal familiesF whose jet-extensions meet the intersection
locus I (because this will then be the case for a Zariski-open set of jet-
extensions): forB̃(2), B̃(3) take any versal unfoldingF of (x, xy2 + y4 + y5)

and forB̃(1,1), B̃(2,1) take a versal unfolding of(x, xy2+y5+y6). The results
in [Ri90] then show that the jet-extension ofF meetsI (in [Ri90] C0-Ae-
versal unfoldings are considered, but the adjacencies of strata are preserved
if one passes toC∞-versal unfoldings). ut

From the smoothness of the componentsB̃k(s,m) for versal families one
can easily deduce the following topological properties of the corresponding
real bifurcation sets. Let̃π denote the restriction of the projectionπ : F

d ×
F

s+1 → F
d to B̃k(s,m) and set1 := ⋃

j≥2{εj = 0}. By a “free boundary”
of a componentBk(s,m) of the bifurcation set we mean the following: for a
versal family,Bk(s,m) is locally diffeomorphic to a semi-algebraic set which
can be triangulated, and we say that ani-simplex is free if it is adjacent to
only one(i + 1)-simplex.

Proposition 4. Let F : F
d × F

2 → F
d × F

2 be anAe-versal family of
corank-1 maps of the plane. (i) The mapπ̃ : B̃k(s,m) → Bk(s,m) is an r-
fold covering, wherer = 1 for k(s, m) = (2), (3) and (2, 1), r = 6 for
k(s, m) = (1, 1, 1) andr = 2 for k(s, m) = (1, 1).Whenr ≥ 2, the branch-
locus is given byB̃k(s,m) ∩ 1 =: Sk(s,m). (ii) For F = R, the components
B(1,1,1) andB(1,1) have “free boundaries” in codimension 2 alongπ(Sk(s,m)).
The full bifurcation setB := ⋃ Bk(s,m) does not have free boundaries in
codimension 2.

Proof. (i) ConsiderF = (u, fu) as a multi-germ of a family with target
(v, q) ∈ F

d × F
2. The versality ofF implies that for allu ∈ Bi \ C, where

C is a closed subset,fu has exactly oneAe-codimension-1 singularity at
f −1

u (q ′), for someq ′ nearq. Let k ≤ s be the number of source points with
identical recognition conditions (k = 3 = s for B̃(1,1,1), k = 2 = s for B̃(1,1),
but k = 1 6= s for B̃(2,1)). There is anSk action on the source points with
identical recognition conditions, hence there arer := k! points ofB̃k(s,m) in
each fibreπ̃−1(u), for u ∈ Bk(s,m) \ C. And the branch-locusSk(s,m) of ther

sheets ofB̃k(s,m) is B̃k(s,m) ∩ 1 (in the casesk(s, m) = (1, 1, 1) and(1, 1)

wherer ≥ 2).
(ii) Adding the conditionεj = 0 to the defining conditions of̃Bk(s,m) in

some appropriate multi-jet space (see above) and pulling back by the multi-
jet extension of the versal familyF , we see thatB̃k(s,m) ∩ 1 is a smooth
submanifold of dimensiond −2 or is empty. The versality ofF implies that
π̃ is finite-to-one, henceπ(B̃k(s,m)∩1) has codimension 2 inRd . In the cases
k(s, m) = (1, 1, 1) and(1, 1), whereSk(s,m) = B̃k(s,m) ∩1 is non-empty, let
U be any open neighborhood ofπ(Sk(s,m)): then, by the versality ofF , all the
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B

B

B B B

B

B

B(2,1)

(3)

(3)(2,1) (1,1)

(2)

(1,1,1)

(3)

Fig. 1.Multi-local bifurcation sets: theB(1,1,1) andB(1,1) components have free boundaries

atπ(B̃k(s,m) ∩1), k(s, m) = (1, 1, 1), (1, 1) (left and middle diagrams), butB(2,1) merely

has a cusp atπ(B̃(2,1) ∩ 1) (diagram on the right). The pointsπ(B̃k(s,m) ∩ 1) are marked
by a dot and the corresponding componentsBk(s,m), k(s, m) = (1, 1, 1), (2, 1), (1, 1), (to
the left, middle and right, respectively) are drawn as solid lines, the other components are
drawn as dashed lines.

fibresπ̃−1(u), u ∈ U , “correspond” to exactly oneAe-codimension-2(s −
1)-germ (i.e. if(u, x, y1, ε2, . . . , εs) ∈ π̃−1(u), where someεj = 0, then
fu is a codimension-2(s − 1)-germ at(x, y1), . . . , (x, y1 +∑

2≤k 6=j≤s εk)).

The smoothness of̃Bk(s,m) implies that the map̃π is of “folding type” (has
even multiplicity) along open subsets ofSk(s,m). Henceπ(Sk(s,m)) is a free
boundary ofBk(s,m). Finally, the defining conditions of̃B(1,1,1) and B̃(1,1)

imply thatπ(S(1,1,1)) ⊂ B(3) ∩ B(2,1) andπ(S(1,1)) ⊂ B(2) ∩ B(3). But the
setsB(2), B(3) andB(2,1) do not have free boundaries, becauseπ̃ : B̃k(s,m) →
Bk(s,m) is 1 : 1 in the complement of some closed subset. It follows that the
full bifurcation set does not have free boundaries.ut

Remark 4.For non-versal families all the setsπ(B̃k(s,m) ∩ 1) are poten-
tially free boundaries, and the setsB̃k(s,m) can also have an “off-diagonal”
branch-locus. Non-versal families of projections of a certain class of sin-
gular surfaces have been studied in [Ri96]: in this case the full bifurca-
tion set still cannot have free boundaries in codimension 2 and the in-
cidences between components of the bifurcation sets (like, for example,
π(B̃(1,1,1) ∩ 1) ⊂ B(3) ∩ B(2,1)) are also valid in this more general situation.

Example 1.Figure 1 shows the bifurcation sets in the base of the miniversal
unfoldings of{(x, xy+y4), (y2, x)} (to the left),(x, xy2+y4+y5) (middle)
and(x, xy + y5 + y7) (to the right). These examples illustrate the fact that,
for versal families, the componentsB(1,1,1) andB(1,1) have free boundaries of
codimension 2 atπ(B̃k(s,m) ∩ 1), whereasB(2,1) merely has cuspidal edges
at the corresponding locus.
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3. Counting Ae-classes of codimension 1 overC

The stable corank-1s-germs fromC
n to C

n are all simple, at present it is
not known whether allAe-codimension-1s-germs are simple (except for
the case of mono-germs, see Remark 5 (ii) at the end of the present section).
In the present section,Ae-codimension-1 class therefore either refers to a
simpleAe-orbit or to a modular stratum of codimension one.

Proposition 5. For s-germs fromC
n to C

n there is exactly one connected
codimension-1Ae-orbit (or, in the presence of moduli in codimension 1,
one connected modular stratum) for eachK-orbit of typeAk(s,m), for 2 ≤
m ≤ n + 1. TheAe-orbits ofK-typeAk(s,m), wherem ≥ n + 2, haveAe-
codimension greater than one (and, in the presence of moduli, the modular
stratum also has codimension greater than one).

Proof. For 2 ≤ m ≤ n, the unstables-germs inAk(s,m) are recognized by
the map(Gk(s,m), Ḡk(s,m)) defined in Section 2.3. Recall thatG−1

k(s,m)(0) is
the closure of theAk(s,m) stratum in the source of the corank-1 mapf , and
that (Gk(s,m), Ḡk(s,m))

−1(0) consists of non-transverseAk(s,m)-points that
do not belong to the closure ofAk(s,m+1). Also recall thatḠ−1

k(s,m)(0) is the
projection of the set{∂ρ/∂xj = 0}1≤j<n ⊂ CP

m−2 × C
n+s−1. The maps

(Gk(s,m), Ḡk(s,m)) and(Gk(s,m), ∂ρ/∂x1, . . . , ∂ρ/∂xn−1) factor:

C
n+s−1 jkf−→ J k(n + s − 1, n)

φ1−→ C
n+s

and

CP
m−2 × C

n+s−1 (id,jkf )−−−−→ CP
m−2 × J k(n + s − 1, n)

φ2−→ C
n+s+m−2

(herek = ∑s
j=1(kj +1)). Set3 := φ−1

1 (0) and3̃ := φ−1
2 (0). The definition

of Gk(s,m) andρ in Section 2.3 implies that̃3 ⊂ CP
m−2 × J k(n + s − 1, n)

is a smooth connected submanifold of codimensionn + s + m − 2 (in
fact, it is the graph of a map). Furthermore, the projection3 of 3̃ onto
J k(n + s − 1, n) is a connected variety of codimensionn + s, but forn ≥ 3
3 fails to be smooth. Deleting certain closed strataS, corresponding tos-
germs ofAe-codimension greater than one, yields a connected submanifold
3 \ S ⊂ J k(n+ s − 1, n) of codimensionn+ s that corresponds to a single
Ae-orbit of codimension one (or, in the presence of moduli in codimension
1, to the modular stratum).

The remaining cases, wherem > n are straightforward. The closure of
theAk(s,m) stratum is a connected smooth submanifold ofJ k(n + s − 1, n)

of codimensionm+s −1, but theK-codimension of thes-germAk(s,m) ism

(thes −1 constant conditions do not contribute to theK-codimension). The
Ae-codimension of the openA-orbit (or the modular stratum) inAk(s,m) is
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m − n (by Proposition 1), hence 1 form = n + 1 and≥ 2 for m ≥ n + 2.
ut

Using the above proposition, we can count theAe-classes of equidi-
mensional codimension-1s-germs. But first we need some definitions. Let
p(i) denote the number of partitions ofi. Let (u, fu) be a mini-versal
unfolding of a codimension-1s-germf0 : C

m → C
m, then thes-germ

g := (u, fu2) : C
m+1 → C

m+1 is called a (quadratic) augmentation off0.
We need the following fact about such augmentations (see [ACM]): aug-
mentations ofAe-equivalents-germs of codimension 1 areAe-equivalent
and also have codimension 1. Ans-germ that is not (equivalent to) an aug-
mentation is said to be primitive. Notice that all codimension-1s-germs
from C

n to C
n are simple if all the primitive codimension-1s-germs from

C
m → C

m, 1 ≤ m ≤ n, are simple.

Proposition 6. The number of corank-1Ae-classes ofs-germs fromC
n to

C
n is equal to

∑n
i=1 p(i + 1). (In the presence of moduli, we count the

modular strata of codimension 1 as a singleAe-class.)

Proof. By induction onn. EachAe-codimension-1s-germf : C
n → C

n is
either the(n − i)th augmentation of exactly oneAe-codimension-1s-germ
f̃ : C

n−i → C
n−i , 1 ≤ i < n, or is primitive. The number ofAe-classes of

s-germs fromC
n to C

n of codimension 1 is therefore equal to the number
of primitive codimension-1s-germs fromC

m → C
m, 1 ≤ m ≤ n.

We claim that the openA-orbits (or, in the presence of moduli inAe-
codimension 1, the modular strata) within thep(n + 1) K-classesAk(s,n+1)

correspond to primitives-germsf : C
n → C

n of Ae-codimension 1 (or, if
the modality isr, of Ae-codimensionr + 1). Notice that anyf̃ : C

n−i →
C

n−i in Ak(s,n+1) hasAe-codimension greater than one (by Proposition 5),
hencef cannot be the augmentation of such af̃ .

Finally, there are no primitives-germs fromC
n → C

n of codimension
1 of K-type Ak(s,m), for m ≤ n. The (n − m + 1)st augmentation of a
representativef : C

m−1 → C
m−1 of the openA-orbit in theK-orbit Ak(s,m)

hasAe-codimension 1 and is, by Proposition 5, the onlys-germ fromC
n to

C
n in Ak(s,m) of Ae-codimension 1. ut

Remark 5.(i)The arguments above show that if the open stratum inAk(s,n+1)

consists of simpleAe-codimension-1s-germs then all equidimensionals-
germs of corank 1 andAe-codimension 1 are simple. We conjecture that all
these codimension-1s-germs are indeed simple.

(ii) The normal forms in [Go] show that this the case for mono-germs
(wheres = 1). Hence there aren codimension-1Ae-classes of mono-germs
from C

n to C
n of corank-1, which are all simple and do not consist of

modular strata.
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4. The complexity of the complement ofB
Throughout this section, the dimensionn will be an arbitrary but fixed con-
stant. The upper bound for the number of connected regions in the comple-
ment of a bifurcation setB will be based on the following estimate.

Lemma 1. Let B be a semi-algebraic bifurcation set inP = R
n or RP

n,
and letB̂ be a closed real algebraic subset ofP containingB. ThenP \ B
has at mostO((degB̂)n) connected components.

Proof. The bifurcation setB is a semi-algebraic subset of the closed real
algebraic set̂B ⊂ P , and the number of connected regions cut out byB is less
than or equal to the number of regions cut out byB̂. The number of connected
regions ofP \ B̂ is a linear function of the(n − 1)st Betti number ofB̂:
taking a 1-point compactification ofR

n or, in case ofP = RP
n, identifying

anti-podal points we can considerB̂ as a subset of then-sphere and obtain
the isomorphism of reduced (co-)homology groupsH̃0(S

n \ B̂) ∼= H̃ n−1(B̂)

(Alexander duality). The desired upper bound then follows at once from a
result of Milnor [Mi], which says that the sum of the Betti number ofB̂ is
of order(degB̂)n. ut

Next, we derive a bound for the degree of the bifurcation set of the family
of all projections of an algebraic hypersurface (for real hypersurfaces, the
bound applies to the complexification ofB). Recall the following result of
Mather [Ma71] (which is an algebraic-geometric analogue of a well-known
result of Mather in the smooth case [Ma73]).

Theorem 1. Let M ⊂ C
N (N sufficiently large) be a regular algebraic

surface of dimensionn, and letπω(M) denote the projection ofM onto
somep-dimensional linear subspace ofC

N from centreω. If (n, p) is a nice
pair of dimensions, then the setB̂ := {ω ∈ C

N : πω(M) is unstable} has
positive codimension for anyM.

Remark 6.The restriction to the nice dimensions(n, p) in the theorem
above is necessary, because outside the nice dimensions the stable maps fail
to be dense. But projections of hypersurfaces into hyperplanes are equidi-
mensional corank-1 maps, and the stable corank-1 maps are dense for all
(n, n). Hence no restrictions onn are required in the results below.

We have the following degree bound for bifurcation setsB of families
of projections of hypersurfaces in(n + 1)-space into hyperplanes.

Proposition 7. Let M ⊂ F
n+1, whereF = C or R, be a regular algebraic

hypersurface of degreed, and consider the family of all central or parallel
projections ofM into n-planes from centres or directionsω ∈ V, where
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V = F
n+1 or FP

n. Let B̂ be either the bifurcation setB (for F = C) or the
smallest real algebraic set containing the semi-algebraic setB (for F = R).
ThenB̂ is a closed subset ofV of degree at mostO(d2(n+1)).

Proof. Note that, by Theorem 1 (and Remark 6 following it),B̂ is closed in
V. Consider the following diagram (recall the discussion in Section 2.3):

B̃(s) ⊂ V × F
n+syπ1

B(s) ⊂ B̂(s) ⊂ V

whereπ1 is the projection onto the first factor and whereB(s) = B̂(s) in the
caseF = C. There are two distinct cases, (i)s = n+1 and (ii)s = 1, . . . , n.
In the first case (i)B̃(n + 1) is the zero-set of the mapQk(n+1,n+1) : V ×
F

2n+1 → F
2n+2. In the second case (ii)̃B(s) = ⋃n

m=2

⋃ B̃k(s,m), where the
second union ranges overO(1) partitions ofm ≤ n havings summands
(notice thatn is assumed to be a constant). Hence there areO(1) setsB̃(s),
1 ≤ s ≤ n, and each such set hasO(1) componentsB̃k(s,m). And each
componentB̃k(s,m) is the zero-set of some map(Qk(s,m), Q̄k(s,m)) : V ×
F

n+s → F
n+s+1.

Now if d is the degree ofM then each component function ofQk(n+1,n+1)

and ofQk(s,m) has degreeO(d), and the degree of the component functions
of Q̄k(s,m) is alsoO(d) (see Section 2.3 for the definition of̄Qk(s,m) and
recall thatn is some given constant). Hence, the degree of eachB̃(s) is
bounded above byO(dn+s+1) in both cases (i) and (ii).

Let π2 denote the projection onto the second factor (i.e. ontoF
n+s). A

“generic” lineL ⊂ V will cut B̂(s) in δ = degB̂(s) points. LetH ⊂ F
n+s

be a “generic” linear subspace whose codimension is equal to the dimension
of B̃(s) ∩ π−1

1 (L). By Bezout’s theorem, the set̃B(s) ∩ π−1
1 (L) ∩ π−1

2 (H)

consists of at mostO(dn+s+1) isolated points whose projections ontoV
are theδ points ofB̂(s) ∩ L. HenceO(dn+s+1) is an upper bound for the
degree ofB̂(s). Finally, note thats ≤ n + 1 (by Corollary 1). The degree of
B̂ = ⋃

s≤n B̂(s) is therefore at mostO(d2(n+1)). ut
Remark 7.For regular algebraic surfacesM in 3-space (wheren = 2) the
above bound for the degree ofB̂ is asymptotically sharp. This follows from
a formula by Petitjean for the degree of the subvarietyB̂(3) = B̂(1,1,1) of
B̂ corresponding to triple fold crossings, which is given by1

3d(d − 3)(d −
4)(d − 5)(d2 + 3d − 2), see p. 122 of [Pe]. In fact, Petitjean gives formulas
for the degrees of all the setŝBk(s,m). The proof of these formulas is based
on iterative techniques by Colley for enumerating stationary multiple points
[Col] and the recognition conditions for theAe-codimension-1 singularities
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for n = 2 (i.e. the defining conditions of the setsB̃k(s,m)) in [Ri96] in terms
of contact between lines and the surfaceM at a set of points. It would be
very interesting to derive a general formula for the degree of the variety
B̂(n + 1) = B̂k(n+1,n+1) of lines in F

n+1 that are tangent toM at n + 1
points. Notice thatB̂(n + 1) is the component of̂B of maximal degree (for
d = degM sufficiently large).

The above degree bound forB̂ ⊃ B, together with the bound in Lemma
1, yields the following

Theorem 2. LetM ⊂ R
n+1 be a regular algebraic hypersurface of degree

d. Then the number of connected regions ofV \ B – and hence the number
of distinct stable projections ofM – are bounded above byO(d2n(n+1)) (for
parallel projection) orO(d2(n+1)2

) (for central projection).

Remark 8.The same bounds are valid for certain singular surfaces in 3-
space: namely for surfaces with transverse double curves and isolated triple-
points [Ri96] and for surfaces with additional cross-caps [Ri98].

5. A final remark

After the present paper had been submitted for publication, a classification
by Damon of discriminants of maps ofKV,e-codimension 1 has appeared
in print (see Sec. 4 of [Da]). This classification and the relation between
theAe-classification of multi-germs and theKV,e-classification of their dis-
criminants (see Sec. 6.2 of [Da]) imply that all corank-1 equidimensional
multi-germs ofAe-codimension 1 are simple, which confirms the conjec-
ture in Remark 5 (i). In particular, we now know that all the codimension-1
Ae-orbits in Propositions 5 and 6 are simple.
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