\mathcal{A}-unimodal map-germs into the plane

J. H. Rieger

(Received October 19, 2001)

Abstract

Singularities of map-germs of the plane of \mathcal{K}-modality 1 were classified by Dimca and Gibson [3]. Map-germs from $\mathbb{R}^{n}(n \geq 2)$ to \mathbb{R}^{2} of \mathcal{A}-modality 0 were classified in [15], here we list those with \mathcal{A}-modality 1 and describe their adjacencies. It turns out that any such \mathcal{A}-orbit of modality 1 is contained in one of the \mathcal{K}-orbits of type A_{3}, A_{5} or D_{4}.

Key words: singularities, modality, \mathcal{A}-classification.

1. Introduction

The modality of a point $p \in X$ under the action of a Lie group G on X is the smallest m such that a sufficiently small neighborhood of p can be covered by a finite number of m-parameter families of orbits. The \mathcal{A} modality of a map-germ f at x is the modality of an \mathcal{A}-sufficient jet $j^{k} f$ in $J^{k}(n, p)_{x, f(x)}$ under the action of the Lie group \mathcal{A}^{k} of k-jets of elements of \mathcal{A}. Map-germs of modality 0 are said to be simple. The \mathcal{A}-simple corank- 1 germs of maps from \mathbb{R}^{2} to \mathbb{R}^{2} were classified in [14], and the \mathcal{A}-simple germs of maps from $\mathbb{R}^{n}(n \geq 2)$ to \mathbb{R}^{2} of any corank were classified in [15].

In the present paper we classify map-germs from $\mathbb{R}^{n}(n \geq 2)$ to \mathbb{R}^{2} of \mathcal{A}-modality 1 (Theorem 1.1). The \mathcal{K}-unimodal germs from the plane to the plane were classified by Dimca and Gibson [3] and all have corank 2. It turns out that the \mathcal{A}-unimodal germs $f: \mathbb{R}^{n}, 0 \rightarrow \mathbb{R}^{2}, 0$ all have rank 1 , in fact they are all contained in one of the \mathcal{K}-orbits of type A_{3}, A_{5} or D_{4}. We also list all the \mathcal{A}-orbits within the \mathcal{K}-orbit A_{3} (Proposition 1.2).

We summarize our main result in the following statement. (The notation for the types of singularities in Table 1 is consistent with the one used for the simple germs in [14] and [15] and with the notation in Table 3 below. The types I, II, III, IV, $\mathbf{V}_{3}, \mathbf{V}_{4}, \mathbf{V I}_{5}$ and $\mathbf{V I}_{7}$ in Table 2 correspond to $N_{1}, N_{2}, N_{4}, N_{6}, N_{3}, N_{7}, N_{5}$ and N_{11} in the classification of germs $\mathbb{R}^{3}, 0 \rightarrow$ $\mathbb{R}^{2}, 0$ of \mathcal{A}_{e}-codimension ≤ 4 by Nabarro [11], see also Chapter 5 of [12].

[^0]We use boldface symbols for these types to distinguish them from Mather's notation for certain corank $2 \mathcal{K}$-classes, see Section 3.)

Theorem 1.1 Any \mathcal{A}-unimodal map-germ $f: \mathbb{R}^{n}, 0 \rightarrow \mathbb{R}^{2}, 0, n \geq 2$, is \mathcal{A}-equivalent to one of the germs in Tables 1 or 2 (if necessary, after adding a sum of squares in some extra variables to the second component function of the map-germs in these tables). The tables show the \mathcal{A}_{e}-codimension (and, in brackets, the \mathcal{A}_{e}-codimension of the modular stratum); $c(f)$ and $d(f)$ denote the cusp and double-fold numbers, respectively.

Table 1. \mathcal{A}-unimodal germs.

Type	$f(x, y)=$	$\operatorname{cod}\left(\mathcal{A}_{e}, f\right)$	$c(f)$	$d(f)$
19	$\left(x, y^{4}+x^{3} y+\alpha x^{2} y^{2}+x^{3} y^{2}\right), \alpha \neq-3 / 2$	$5[4]$	6	3
$19[-3 / 2]$	$\left(x, y^{4}+x^{3} y-3 / 2 \cdot x^{2} y^{2}+x^{3} y^{2}\right)$	5	7	3
22	$\left(x, y^{4}+x^{3} y+\alpha x^{2} y^{2}+x^{4} y^{2}\right), \alpha \neq-3 / 2$	$6[5]$	6	3
$22[-3 / 2]$	$\left(x, y^{4}+x^{3} y-3 / 2 \cdot x^{2} y^{2}+x^{4} y^{2}\right)$	6	8	3
23	$\left(x, y^{4}+x^{3} y+\alpha x^{2} y^{2}\right), \alpha \neq-3 / 2$	$7[6]$	6	3
24_{k}	$\left(x, y^{4}+x^{3} y-3 / 2 \cdot x^{2} y^{2}+x^{k} y\right), k \geq 6$	$k+1$	$k+3$	3
25_{k}	$\left(x, y^{4} \pm x^{2} y^{2}+x^{k} y\right), k \geq 4$	$k+1$	6	k
26_{k}	$\left(x, y^{4}+x^{k} y \pm x^{k-1} y^{2}\right), k=4,5$	$2 k-2$	$2 k$	k
	$\pm \pm$ agree for even k			
$27_{k, l}$	$\left(x, y^{4}+x^{k} y \pm x^{l} y^{2}\right), k=4,5$	$k+l-1$	$2 k$	k
28_{k}	$k \leq l \leq 2 k-2, \pm$ agree for odd l			
$29_{3, l}$	$\left(x, y^{4}+x^{k} y\right), k=4,5$	$3 k-2$	$2 k$	k
8	$\left(x, y^{4}+x^{3} y^{2}+x^{l} y\right), l \geq 5$	$l+2$	9	l
9	$\left(x, x y+y^{6} \pm y^{8}+\alpha y^{9}\right)$	$4[3]$	4	6
20	$\left(x, x y+y^{6}+y^{9}\right)$	4	4	6
21	$\left(x, x y+y^{6} \pm y^{14}\right)$	5	4	6
15	$\left(x, x y+y^{6}\right)$	6	4	6

Proposition 1.2 Any \mathcal{A}-finite map-germ in $\mathcal{K}\left(x, y^{4}\right)$ is \mathcal{A}-equivalent to one of the germs in Table 3. The notation is the same as in Table 1, and $M(f)$ indicates the modality.

Table 2. more \mathcal{A}-unimodal germs.

Type	$f(x, y, z)=$	$\operatorname{cod}\left(\mathcal{A}_{e}, f\right)$	$c(f)$
I	$\left(x, x y+y^{3}+\alpha y^{2} z+z^{3} \pm z^{5}\right), \alpha \neq 0, \pm(27 / 4)^{1 / 3}$	$3[2]$	4
\mathbf{I}^{\prime}	$\left(x, x y+y^{3}+(27 / 4)^{1 / 3} y^{2} z+z^{3} \pm y^{5}\right)$	3	4
II	$\left(x, x y+y^{3}+\alpha y^{2} z+z^{3}\right), \alpha \neq 0,-(27 / 4)^{1 / 3}$	$4[3]$	4
III	$\left(x, x y+\epsilon_{1} y^{2} z+z^{3}+\epsilon_{2} z^{5}\right), \epsilon_{i}= \pm 1$	3	4
IV	$\left(x, x y \pm y^{2} z+z^{3}\right)$	4	4
\mathbf{V}_{k}	$\left(x, x y+y^{3}+z^{3} \pm y^{k} z\right), k \geq 3$	k	$k+2$
$\mathbf{V I}_{2 k+1}$	$\left(x, x y \pm y^{3}+y z^{2}+z^{2 k+1}\right), k \geq 2$	$k+1$	4

Table 3. \mathcal{A}-orbits in $\mathcal{K}\left(x, y^{4}\right)$.

Type	$f(x, y)=$	$\operatorname{cod}\left(\mathcal{A}_{e}, f\right)$	$M(f)$	$c(f)$	$d(f)$
5	$\left(x, y^{4}+x y\right)$	1	0	2	1
$11_{2 k+1}$	$\left(x, y^{4}+x y^{2}+y^{2 k+1}\right), k \geq 2$	k	0	3	k
16	$\left(x, y^{4}+x^{2} y \pm y^{5}\right)$	3	0	4	2
17	$\left(x, y^{4}+x^{2} y\right)$	4	0	4	2
19	$\left(x, y^{4}+x^{3} y+\alpha x^{2} y^{2}+x^{3} y^{2}\right), \alpha \neq-3 / 2$	5 [4]	1	6	3
$19[-3 / 2]$	$\left(x, y^{4}+x^{3} y-3 / 2 \cdot x^{2} y^{2}+x^{3} y^{2}\right)$	5	1	7	3
22	($\left.x, y^{4}+x^{3} y+\alpha x^{2} y^{2}+x^{4} y^{2}\right), \alpha \neq-3 / 2$	6 [5]	1	6	3
$22[-3 / 2]$	$\left(x, y^{4}+x^{3} y-3 / 2 \cdot x^{2} y^{2}+x^{4} y^{2}\right)$	6	1	8	3
23	$\left(x, y^{4}+x^{3} y+\alpha x^{2} y^{2}\right), \alpha \neq-3 / 2$	7 [6]	1	6	3
24_{k}	$\left(x, y^{4}+x^{3} y-3 / 2 \cdot x^{2} y^{2}+x^{k} y\right), k \geq 6$	$k+1$	1	$k+3$	3
25_{k}	$\left(x, y^{4} \pm x^{2} y^{2}+x^{k} y\right), k \geq 4$	$k+1$	1	6	k
26_{k}	$\left(x, y^{4}+x^{k} y \pm x^{k-1} y^{2}\right), k \geq 4$ \pm agree for even k	$2 k-2$	$\begin{gathered} 1(k=4,5) \\ 2(k \geq 6) \end{gathered}$	$2 k$	k
$27_{k, l}$	$\begin{gathered} \left(x, y^{4}+x^{k} y \pm x^{l} y^{2}\right), k \geq 4 \\ k \leq l \leq 2 k-2, \pm \text { agree for odd } l \end{gathered}$	$k+l-1$	$\begin{gathered} 1(k=4,5) \\ 2(k \geq 6) \end{gathered}$	$2 k$	k
28_{k}	$\left(x, y^{4}+x^{k} y\right), k \geq 4$	$3 k-2$	$\begin{aligned} & 1(k=4,5) \\ & 2(k \geq 6) \end{aligned}$	$2 k$	k
$29_{k, l}$	$\begin{gathered} \left(x, y^{4} \pm x^{k} y^{2}+x^{l} y\right) \\ k \geq 3, l \geq k+2,2 l \neq 3 k \end{gathered}$	$k+l-1$	$\begin{gathered} 1 \quad(k=3) \\ 2(k \geq 4) \end{gathered}$	$\min (3 k, 2 l)$	l
$30_{k, l}$	\pm agree for odd k $\begin{gathered} \left(x, y^{4} \pm x^{2 k} y^{2}+\alpha x^{3 k} y+x^{l} y\right) \\ k \geq 2,3 k+1 \leq l \leq 6 k \end{gathered}$	$\begin{gathered} 2 k+l-1 \\ {[2 k+l-2]} \end{gathered}$	2	$6 k$	$3 k$
$30_{k, l}^{-}\left[\pm(2 / 3)^{3 / 2}\right]$	$\left(x, y^{4}-x^{2 k} y^{2} \pm(2 / 3)^{3 / 2} x^{3 k} y+x^{l} y\right)$	$2 k+l-1$	2	$3 k+l$	$3 k$
31_{k}	$\begin{gathered} k \geq 2, l \geq 3 k+1 \\ \left(x, y^{4} \pm x^{2 k} y^{2}+\alpha x^{3 k} y\right), k \geq 2 \\ \alpha \neq 0 ; \text { for } 31_{k}^{-}: \alpha \neq \pm(2 / 3)^{3 / 2} \end{gathered}$	$8 k[8 k-1]$	2	$6 k$	$3 k$

Du Plessis has given a much more 'compact' classification of \mathcal{A}-orbits in A_{3} (in which some orbits may not be distinct) by first reducing to the prenormal form $\left(x, y^{4}+P(x) y+Q(x) y^{2}\right)$ (see Prop. 4.10 in [13]). From the rather less 'compact' - classification above, which is based on an \mathcal{A}-invariant stratification of the jet-space, the adjacencies between and the modalities of orbits can be determined more easily. It is also interesting to compare the above classification with the classification of $C^{0}-\mathcal{A}$-orbits in A_{3} in [6], the latter orbits all have weighted homogeneous representatives.

2. Notation and techniques

As a starting point of the present classification we take the \mathcal{A}^{k}-orbits of positive modality at the "boundary" of the simple orbits classified in [14, 15], and determine the \mathcal{A}^{l}-orbits $(l>k)$ over these, for increasing l, until an \mathcal{A} sufficient orbit or an orbit of modality >1 appears. To find the \mathcal{A}^{k}-orbits over a given ($k-1$)-jet we use a combination of coordinate changes, Mather's Lemma (Lemma 3.1 in [9]) and complete transversals (Theorem 2.9 in [2]), to determine the order of \mathcal{A}-determinacy we use a combination of Theorem 2.1 in [1], Corollary 3.9 in [13] and Mather's Lemma. A very brief summary of notation and concepts from determinacy theory is given below (for details we refer to the survey in [16]).

Let $f: \mathbb{R}^{n}, 0 \rightarrow \mathbb{R}^{p}, 0$ be a C^{∞}-germ, the group $\mathcal{A}=\operatorname{Diff}\left(\mathbb{R}^{n}, 0\right) \times$ $\operatorname{Diff}\left(\mathbb{R}^{p}, 0\right)$ acts on the space of smooth germs f as follows: $(h, k) \cdot f=h \circ f \circ$ $k^{-1},(k, h) \in \mathcal{A}$. Let C_{n} and C_{p} denote rings of function-germs at the origin in source and target, and let m_{n} and m_{p} denote the corresponding maximal ideals. We write $J^{k}(n, p)$ for the space of k th-order Taylor polynomials at the origin, and $j^{k} f$ for the k-jet of the map f. Similarly $\mathcal{A}^{k}=j^{k}(\mathcal{A})$ denotes k-jets of elements of \mathcal{A}. The Lie group \mathcal{A}^{k} acts smoothly on $J^{k}(n, p)$, and when we speak of equivalence of k-jets we shall always mean \mathcal{A}^{k}-equivalence. Instead of writing $T_{j^{k} f(0)} \mathcal{A}^{k} \cdot j^{k} f(0)$ we shall write $T \mathcal{A}^{k} \cdot f$. A map-germ f is said to be k-determined (for some given group of equivalences) if every map g with the same k-jet as f is equivalent to f, in that case any jet $j^{l} f$ with $l \geq k$ is said to be sufficient.

Let θ_{f} denote the C_{n}-module of vector fields over f (i.e. sections of $\left.f^{*} T \mathbb{R}^{p}\right)$. Set $\theta_{n}=\theta\left(1_{\mathbb{R}^{n}}\right)$ and $\theta_{p}=\theta\left(1_{\mathbb{R}^{p}}\right)$; then the homomorphisms $t f$ and $w f$ are defined as follows:

$$
t f: \theta_{n} \rightarrow \theta_{f}, \quad t f(\psi)=d f \cdot \psi,
$$

(where $d f$ is the differential of f), and

$$
w f: \theta_{p} \rightarrow \theta_{f}, \quad w f(\phi)=\phi \circ f
$$

Apart from \mathcal{A}, we need the groups $\mathcal{A}_{1}, \mathcal{A}_{e}$ and $\mathcal{K}_{e}: \mathcal{A}_{1}$ is the subgroup of \mathcal{A} of elements whose 1 -jet is the identity, \mathcal{A}_{e} is the extended pseudo-group of non-origin-preserving diffeomorphisms, and \mathcal{K}_{e}, resp. \mathcal{K}, is the (pseudo-) group obtained by allowing invertible $p \times p$ matrices with entries in C_{n} to act on the left, the right action is the same as for \mathcal{A}_{e}, resp. \mathcal{A}. The following tangent spaces are associated with these latter groups: $T \mathcal{A}_{e} \cdot f=t f\left(\theta_{n}\right)+$ $w f\left(\theta_{p}\right)$ and $T \mathcal{K}_{e} \cdot f=t f\left(\theta_{n}\right)+f^{*} m_{p} \cdot \theta_{f}$, for \mathcal{A} and \mathcal{K} one multiplies by the first and for \mathcal{A}_{1} by the second powers of the relevant maximal ideals, respectively.

The modality of an orbit depends on the orbits it is adjacent to. Recall that a class of germs X is adjacent to another class Y, denoted by $X \rightarrow Y$, if any representative f of X can be embedded in an unfolding $F\left(u, f_{u}(x)\right)$, where $f=f_{0}$, such that the set $\{(u, x)\}$ for which $f_{u}(x) \in Y$ contains $(0,0)$ in its closure. In order to rule out certain adjacencies the following \mathcal{A} invariants, which are upper-semicontinuous under deformations, are useful: apart from standard invariants, like the \mathcal{A}_{e}-codimension or the Milnor number of the critical set, the cusp and double-fold numbers, denoted by $c(f)$ and $d(f)$, are such invariants associated with map-germs into the plane. For germs of rank 1 (there are no \mathcal{A}-unimodal germs into the plane of rank 0 , see Proposition 3.1) these can be calculated as follows.

For $n=2$ and $f(x, y)=(x, g(x, y))$, we have that $c(f)=\operatorname{dim} C_{2} /\left\langle g_{y}, g_{y y}\right\rangle$ and $d(f)=1 / 2 \cdot \operatorname{dim} C_{3} / I$, where

$$
I=\left\langle g_{y}(x, y), h:=t^{-2}\left(g(x, y+t)-g(x, y)-t \cdot g_{y}(x, y)\right), \partial h / \partial t\right\rangle
$$

(For germs of rank 0 there is a corresponding formula for $c(f)$, see [4], but for $d(f)$ no such formula seems to be available.)

For $n=3$ and $f(x, y, z)=(x, g(x, y, z))$, we have

$$
c(f)=\operatorname{dim} C_{3} /\left\langle g_{y}, g_{z}, g_{y y} g_{z z}-g_{y z}^{2}\right\rangle
$$

(In the rank 1 case above the cusps are defined as complete intersections, Fukui et al. [5] have shown that the corresponding local ring for rank 0 germs fails to be Cohen-Macaulay. I do not have a formula for $d(f)$, not even for rank 1 germs.)

Finally, a remark on notation: X, Y denote target coordinates, x, y, \ldots
source coordinates, and greek letters α, β denote moduli (for "general" coefficients we use a, b, c, \ldots). The singularity types 1 to 19 refer to the \mathcal{A} simple germs or to germs of \mathcal{A}_{e}-codimension ≤ 4 (of corank 1 , from the plane to the plane) in Table 1 of [14], new additional singularities (of modality ≥ 1 and \mathcal{A}_{e}-codimension ≥ 5) are of type ≥ 20.

3. The classification

The first result shows that there are no \mathcal{A}-unimodal germs from n-space, $n \geq 2$, into the plane of rank 0 .

Proposition 3.1 A map-germ $f: \mathbb{R}^{n}, 0 \rightarrow \mathbb{R}^{2}, 0$ of rank 0 is either \mathcal{A} equivalent to some member of one of the \mathcal{A}-simple series of germs of type $\mathrm{I}_{2,2}^{l, m}$ or $\mathrm{II}_{2,2}^{l}$ from [15] or it has \mathcal{A}-modality ≥ 2.
Proof. For $n \geq 5$ the \mathcal{K}-modality is ≥ 2 (see p. 629 of [17]). Amongst the remaining cases, we first consider $n=2$. The \mathcal{K}-simple orbits were classified by Mather [10] and Lander [7] has described the adjacencies between the \mathcal{K}-orbits of type $\Sigma^{2,0}$, i.e. between the series $\mathrm{I}_{k, l}, \mathrm{II}_{k, l}(l \geq k \geq 2)$ and IV_{k} $(k \geq 3)$ (note: this is Mather's notation for real \mathcal{K}-orbits and should not be confused with the \mathcal{A}-classes I, II and so on in Table 2). It has been shown in [15] that all the \mathcal{A}-orbits in $\mathrm{I}_{2,2}$ belong to the doubly indexed series of simple germs $\mathrm{I}_{2,2}^{l, m}$, and those in $\mathrm{I}_{2,2}$ belong to the series of simple germs $\mathrm{II}_{2,2}^{l}$. The remaining \mathcal{K}-orbits are either adjacent to $\mathrm{I}_{2,3}$ or to IV_{3}, and Lemma 2.3.3 of [15] states that all \mathcal{A}-orbits in $\mathrm{I}_{2,3}$ are non-simple, but the proof of this lemma actually implies that their modality is ≥ 2. Hence we can conclude the case $n=2$ by showing that all \mathcal{A}-orbits in $\mathrm{IV}_{3}=\mathcal{K}\left(x^{2}+y^{2}, x^{3}\right)$ are at least bi-modal. A general 3 -jet in IV_{3} is given by

$$
\sigma=\left(x^{2}+y^{2}, x^{3}+a x^{2} y+b x y^{2}+c y^{3}\right),
$$

and for the subspace $\mathbb{R}\left\{x^{2} y, x y^{2}, y^{3}\right\} \cdot \partial / \partial Y$ there is only 1 generator, namely $t \sigma(y, 0)-t \sigma(0, x)+a \cdot w \sigma(0, Y)$.

For $n=3$ and $n=4$ there are the following complex \mathcal{K}-orbits of rank 0 to which all others are adjacent to, namely $\mathcal{K}\left(x^{2}+y^{2}, x^{2}+z^{2}\right)$ and $\mathcal{K}\left(x^{2}+\right.$ $y^{2}+z^{2}, y^{2}+\alpha \cdot z^{2}+w^{2}$), where $\alpha \neq 0,1$ (the latter is usually denoted by $T_{2,2,2,2}$). The proof of Lemma 2.3.5 in [15] shows that the \mathcal{A}-orbits in the former have modality ≥ 2, and somewhat more lengthy calculations show that the \mathcal{A}-orbits in the latter have modality ≥ 4. Over the reals, the above
two \mathcal{K}-orbits split into various real orbits, and the other real \mathcal{K}-orbits of rank 0 are adjacent to at least one of these. Now we argue as follows: let S be the \mathcal{A}-modular stratum in $\mathcal{K}\left(x^{2}+y^{2}, x^{2}+z^{2}\right)$ of minimal codimension (over \mathbb{C} there is only one such connected S). Then the modality of any \mathcal{A}-orbit in one of the real forms of $\mathcal{K}\left(x^{2}+y^{2}, x^{2}+z^{2}\right)$ is bounded from below by the modality of S, and hence ≥ 2. The same argument applied to $\mathcal{K}\left(x^{2}+y^{2}+z^{2}, y^{2}+\alpha \cdot z^{2}+w^{2}\right)$ shows that any \mathcal{A}-orbit in some real form of this \mathcal{K}-orbit has modality ≥ 4.

Next consider germs of rank 1: any such germ is \mathcal{A}-equivalent to some

$$
\begin{equation*}
h(x, y, z)=\left(x, g\left(x, y_{1}, \ldots, y_{m}\right)+\sum_{i=1}^{n-m-1} \epsilon_{i} z_{i}^{2}\right), \tag{*}
\end{equation*}
$$

where $g\left(0, y_{1}, \ldots, y_{m}\right)$ is in the third power of the maximal ideal and $\epsilon_{i}=$ ± 1 (see Lemma 1.1 of [15]). With m as above we have the following.

Lemma 3.2 Any map-germ $f: \mathbb{R}^{n}, 0 \rightarrow \mathbb{R}^{2}, 0$ of rank 1 , which is \mathcal{A} equivalent to some h as above with $m \geq 3$, has \mathcal{A}-modality ≥ 2.

Proof. Take $m=3$ and $n=4$: there are two \mathcal{A}^{2}-orbits satisfying the conditions on h, namely ($x, x y_{1}$) and ($x, 0$), where the latter is adjacent to the former. One checks that any \mathcal{A}-orbit over the first \mathcal{A}^{2}-orbit (and hence also over the second) has modality ≥ 2 : note that a general 3 -jet over ($x, x y_{1}$) has the form:

$$
\left(x, x y+h\left(y_{1}, y_{2}, y_{3}\right)\right), \quad h \in H^{3},
$$

where H^{3} is the space of cubic forms in y_{1}, y_{2}, y_{3}, which has dimension 10 . But the subspace $H^{3} \cdot \partial / \partial Y \subset T \mathcal{A}^{3} \cdot f$ has only 8 generators.

Finally, increasing n, for m fixed, doesn't affect the above argument, and increasing m increases the difference between $\operatorname{dim} H^{3}$ and the number of generators.

Note that a deformation of h, for given m and n, does not contain germs that are \mathcal{A}-equivalent to some h^{\prime} with $m^{\prime}>m$ (where h^{\prime} and m^{\prime} refer to a representative of the form ($*$) above). In order to classify the \mathcal{A}-unimodal germs of rank 1 (and hence all \mathcal{A}-unimodal germs) it is therefore sufficient to consider the two cases $m=1, n=2$ and $m=2, n=3$.

3.1. \quad Case $m=1$ and $n=2$

In this case, we have to determine the \mathcal{A}-orbits in $A_{k}=\mathcal{K}\left(x, y^{k+1}\right)$ of modality 1 . The modality of the \mathcal{A}-orbits in $A_{\geq 6}$ is ≥ 2, and all the \mathcal{A}-orbits in $A_{\leq 2}$ are simple, see [14]. We will see that the modality of the \mathcal{A}-orbits in A_{3} is 0,1 or 2 , in A_{4} it is 0 or ≥ 2 and in A_{5} it is ≥ 1.

To find the \mathcal{A}-unimodal orbits we have to expand the following subtrees of the classification tree for corank 1 germs of the plane in [14] (see \mathbf{A} to \mathbf{D} below) until the modality becomes two or greater.
A. $j^{2} f=(x, x y)$ (see classification tree Fig. 1 of [14]): all germs f in $A_{k}, k=3$ or 4 , with this 2 -jet are simple, and $f=\left(x, x y+y^{6}\right)$ is 14 determined (Section 3.1 of [14]). Using complete transversals or Mather's lemma one easily determines the following \mathcal{A}-orbits over f :

$$
\begin{array}{rc}
\left(x, x y+y^{6} \pm y^{8}+\alpha y^{9}\right) & \text { type } 8 \\
\left(x, x y+y^{6}+y^{9}\right) & \text { type } 9 \\
\left(x, x y+y^{6} \pm y^{14}\right) & \text { type } 20 \\
\left(x, x y+y^{6}\right) & \text { type } 21
\end{array}
$$

The determinacy degrees of these are $9,9,14$ and 14 , and the $\mathcal{A}_{e^{-}}$ codimensions are 4 (and 3 for the modular stratum), 4,5 and 6 .

The \mathcal{A}-orbit of minimal codimension within the \mathcal{K}-orbit A_{6} is the bimodal germ $\left(x, x y+y^{7} \pm y^{9}+\alpha y^{10}+\beta y^{11}\right)$, type 10 in [14], which has \mathcal{A}_{e}-codimension 6 - the codimension of the modular stratum being 4 . The closure of this modular stratum contains all \mathcal{A}-orbits in $A_{\geq 6}$, the modality of these orbits is therefore ≥ 2.
B. $j^{3} f=\left(x, x y^{2}\right)$ (see classification tree Fig. 3 of [14]): the \mathcal{A}-orbits above this 3 -jet in A_{3} and A_{4} are all simple (and denoted by $11_{2 k+1}, 12,13$ and 14 in [14]).

We claim that there is only one unimodal germ in A_{5} (with $j^{3} f=$ $\left.\left(x, x y^{2}\right)\right)$:

$$
\left(x, x y^{2}+y^{6}+y^{7}+\alpha y^{9}\right) \quad \text { type } 15
$$

having \mathcal{A}_{e}-codimension 5 (the codimension of the modular stratum is 4). Note that a complete k-transversal, $k>6$, for $j^{k-1} f=\left(x, x y^{2}+y^{6}\right)$ is either given by $\left(x, x y^{2}+y^{6}+c y^{k}\right)$ (for odd k) or else by $\left(x, x y^{2}+y^{6}\right)$, and that there are two $\mathcal{A}^{2 k+1}$-orbits, $k \geq 3:\left(x, x y^{2}+y^{6}+y^{2 k+1}\right)$ and $\left(x, x y^{2}+y^{6}\right)$. For $k=3$, one obtains type 15 above as the only case. Some more substantial
calculations then show that the germs

$$
g_{k}:=\left(x, x y^{2}+y^{6}+y^{4 k+1}+\alpha y^{4 k+2}+\beta y^{4 k+3}\right), \quad k \geq 2
$$

are ($4 k+3$)-determined and have modality ≥ 2. The \mathcal{A}-orbits over $j^{2 k+1} f=$ $\left(x, x y^{2}+y^{6}+y^{2 k+1}\right)$, where $k \geq 4$ is not a multiple of 2 , lie in the closure of $\mathcal{A} \cdot g_{(k-1) / 2}$ and hence have modality ≥ 2. Type 15 is therefore the only unimodal \mathcal{A}-orbit over $\left(x, x y^{2}+y^{6}\right)$.

Finally, one checks that all \mathcal{A}-orbits in $A_{\geq 6}$ over the 3 -jet $\left(x, x y^{2}\right)$ belong to the closure of

$$
\left(x, x y^{2}+y^{7}+y^{8}+\alpha y^{10}+\beta y^{11}\right) .
$$

This is 11 -determined for generic choices of (α, β), has \mathcal{A}_{e}-codimension 7 (codimension of stratum being 5) and modality ≥ 2.
C. $j^{3} f=\left(x, x^{2} y\right)$ (see classification tree Fig. 4 of [14]): the \mathcal{A}-orbits in A_{3} over this 3 -jet (types 16 and 17) are all simple, and those in $A_{\geq 4}$ lie in the closure of

$$
\left(x, x^{2} y+x y^{3}+\alpha y^{5}+\beta y^{7}\right) \quad \text { type } 18,
$$

which has \mathcal{A}_{e}-codimension 6 (the codimension of the modular stratum being 4) and modality ≥ 2.
D. $j^{3} f=(x, 0)$ (see classification tree Fig. 5 of [14]): one checks that the \mathcal{A}-orbits in $A_{\geq 4}$ over this 3 -jet belong to the closure of type 18 above and hence have modality ≥ 2.

We will now determine all the \mathcal{A}-orbits in A_{3} over $j^{3} f=(x, 0)$. These have modality 1 and 2 and, together with the simple \mathcal{A}-orbits in A_{3} (types $5,11_{2 k+1}, 16$ and 17 in [14]), yield a complete classification of \mathcal{A}-orbits in A_{3}. A general 4 -jet over such a 3 -jet is given by $\sigma=\left(x, a x^{3} y+b x^{2} y^{2}+y^{4}\right)$, and the \mathcal{A}^{4}-orbits can be determined by integrating the vector field

$$
t \sigma(x \cdot \partial / \partial x)-w \sigma(X \cdot \partial / \partial X)=3 a x^{3} y \cdot \partial / \partial Y+2 b x^{2} y^{2} \cdot \partial / \partial Y
$$

which yields the following orbits (see 3.2.3 of [14]):

$$
\begin{array}{r}
f_{\alpha}=\left(x, y^{4}+x^{3} y+\alpha x^{2} y^{2}\right) \\
\left(x, y^{4} \pm x^{2} y^{2}\right) \\
\left(x, y^{4}\right)
\end{array}
$$

In case of (a) the modular stratum has one special orbit corresponding to $\alpha=-3 / 2$.

For future reference we record the following four cases, namely (c), (b), (a) with $\alpha=-3 / 2$, and (a) with $\alpha \neq-3 / 2$, which correspond to a stratification of the $\left(x^{3} y, x^{2} y^{2}\right) \cdot \partial / \partial Y$-plane with coordinates u, v into the origin, the line $u=0$ minus the origin, the special orbit mentioned above (an open half-parabola, cutting the line $u=1$ in $v=-3 / 2$ and tending to the orign) and the rest of the plane. Notice that \mathcal{A}-orbits lying over different 1 -dimensional strata, given by the second and third case, cannot be adjacent to each other (this will be used below).

Next, one checks that f_{α} is 6 -determined for all $\alpha \neq-3 / 2$ and that, in this case, there are the following \mathcal{A}-orbits over this 4 -jet:

$$
\begin{array}{rc}
\left(x, y^{4}+x^{3} y+\alpha x^{2} y^{2}+x^{3} y^{2}\right) & \text { type 19 } \\
\left(x, y^{4}+x^{3} y+\alpha x^{2} y^{2}+x^{4} y^{2}\right) & \text { type } 22 \\
\left(x, y^{4}+x^{3} y+\alpha x^{2} y^{2}\right) & \text { type } 23
\end{array}
$$

The \mathcal{A}_{e}-codimensions of these are 5, 6 and 7 (the codimensions of the modular strata being 4,5 and 6) and the determinacy degrees are 5,6 and 6 , respectively. In the first two cases the special orbits $19[-3 / 2]$ and $22[-3 / 2]$ are also 5 - respectively 6 -determined. Type 23 is not finitely determined for $\alpha=-3 / 2$, in that case it is the stem of the series

$$
\left(x, y^{4}+x^{3} y-3 / 2 \cdot x^{2} y^{2}+x^{k} y\right), \quad k \geq 6, \quad \text { type } 24_{k}
$$

which is $(k+1)$-determined and has \mathcal{A}_{e}-codimension $k+1$.
In the case of (b) there are two \mathcal{A}^{k+1}-orbits, $k \geq 4$, over $j^{k} f=\left(x, y^{4} \pm\right.$ $x^{2} y^{2}$), namely ($x, y^{4} \pm x^{2} y^{2}$) and

$$
\left(x, y^{4} \pm x^{2} y^{2}+x^{k} y\right) \quad \text { type } 25_{k} .
$$

The latter is $(k+1)$-determined and has \mathcal{A}_{e}-codimension $k+1$.
Finally, in case (c) there are the following \mathcal{A}^{k}-orbits, $k \geq 5$, over $j^{4} f=$ $\left(x, y^{4}\right)$:

$$
\begin{array}{r}
\left(x, y^{4}+x^{k-1} y \pm x^{k-2} y^{2}\right) \\
\left(x, y^{4}+x^{k-1} y\right) \\
\left(x, y^{4} \pm x^{k-2} y^{2}\right) \\
\left(x, y^{4}\right),
\end{array}
$$

where \pm coincide for odd k. One checks that the first k-jet is sufficient.

Hence we have the series

$$
\left(x, y^{4}+x^{k} y \pm x^{k-1} y^{2}\right), \quad k \geq 4, \quad \text { type } 26_{k}
$$

having \mathcal{A}_{e}-codimension $2 k-2$.
The second k-jet $\sigma:=\left(x, y^{4}+x^{k-1} y\right)$ is $(2 k+1)$-determined, and there are the following \mathcal{A}-orbits over σ :

$$
\begin{array}{cll}
\left(x, y^{4}+x^{k} y \pm x^{l} y^{2}\right), \quad k \geq 4, & k \leq l \leq 2 k-2 & \text { type } 27_{k, l} \\
\left(x, y^{4}+x^{k} y\right), & k \geq 4, & \text { type } 28_{k}
\end{array}
$$

having \mathcal{A}_{e}-codimension $k+l-1$ and $3 k-2$, respectively. The orbits $27_{k, l}^{ \pm}$ agree for odd l and are $(l+2)$-determined.

Taking $\left(x, y^{4} \pm x^{k} y^{2}\right), k \geq 3$, as a representative of the third orbit above we find the following \mathcal{A}^{l}-orbits, $l \geq k+2$:

$$
\begin{aligned}
&\left(x, y^{4} \pm x^{k} y^{2}+x^{l} y\right), \quad 2 l \neq 3 k \\
&\left(x, y^{4} \pm x^{k} y^{2}+\alpha x^{3 k / 2} y\right) \\
&\left(x, y^{4} \pm x^{k} y^{2}\right)
\end{aligned}
$$

The first jet is sufficient, giving the doubly indexed series $29_{k, l}$, where $k \geq 3$, $l \geq k+2,2 l \neq 3 k$ and where \pm agree for odd k. Rewriting the second jet as

$$
f_{k}^{ \pm}=\left(x, y^{4} \pm x^{2 k} y^{2}+\alpha x^{3 k} y\right), \quad k \geq 2
$$

and using the weighted homogeneity of $f_{k}^{ \pm}$, one shows that it is $(6 k+1)$ determined for $\alpha \neq 0$ (in case of f_{k}^{+}) and for $\alpha \neq 0, \pm(2 / 3)^{3 / 2}$ (in case of $\left.f_{k}^{-}\right)$. For such generic choices of α we then find the following \mathcal{A}-orbits over the $(3 k+1)$-jet $f_{k}^{ \pm}$:

$$
\begin{array}{cl}
\left(x, y^{4} \pm x^{2 k} y^{2}+\alpha x^{3 k} y+x^{l}\right), \quad k \geq 2,3 k<l \leq 6 k, & \text { type } 30_{k, l} \\
\left(x, y^{4} \pm x^{2 k} y^{2}+\alpha x^{3 k} y\right), & k \geq 2,
\end{array} \text { type } 31_{k}
$$

These are $(l+1)$ - and $(6 k+1)$-determined, respectively.
It remains to investigate the special values of the modulus α : for $\alpha=0$ we are back to one of the cases already considered, and for $\alpha= \pm(2 / 3)^{3 / 2}$ we find the following doubly indexed series, type $30_{k, l}^{-}\left[\pm(2 / 3)^{3 / 2}\right]$, over the $(3 k+1)$-jet f_{k}^{-}:

$$
\left(x, y^{4}-x^{2 k} y^{2} \pm(2 / 3)^{3 / 2} x^{3 k} y+x^{l} y\right), \quad k \geq 2, l \geq 3 k+1
$$

This is $(l+1)$-determined, and completes the classification of \mathcal{A}-orbits in A_{3} (Proposition 1.2). It also completes the expansion of the classification subtrees \mathbf{A} to \mathbf{D}, all \mathcal{A}-orbits further down these subtrees have modality ≥ 2.

Amongst the orbits in \mathbf{A} to \mathbf{D} of modality ≥ 1 we now have to find the ones of modality 1 , we also determine their adjacencies. In order to rule out certain adjacencies we calculate the cusp and double-fold numbers $c(f)$ and $d(f)$ (using the formulas in Section 2), the Milnor numbers of the critical sets and the local multiplicities of the germs f. All these invariants are upper-semicontinuous (for $c(f)$ and $d(f)$ the results of these calculations are shown in Table 1, the other to invariants are very easy to calculate). Notice that the \mathcal{A}-orbits in A_{k}, for $k \neq 3,5$, are either simple or have modality ≥ 2, hence we only have to consider A_{3} and A_{5} further.

The only \mathcal{A}-orbits in A_{5}, whose modality could be less than 2 , are those with 2-jet ($x, x y$) (types 8, 9, 20 and 21) and type 15 . The Milnor numbers of the critical sets of all these germs is ≤ 1 and therefore smaller than that of any non-simple germ in $A_{\leq 4}$. These orbits are therefore not adjacent to any non-simple orbit in $A_{\leq 4}$, and the adjacencies between these orbits is shown in Table 4. For brevity we use the following conventions in the adjacency diagrams: (i) when two classes of germs X and Y have several real forms (differing by some \pm signs) then $X \leftarrow Y$ means that each real form of Y is adjacent to all real forms of X unless the contrary is stated, (ii) we don't show the simple orbits to which a given unimodal orbit is adjacent to. In the diagrams the \mathcal{A}_{e}-codimensions of the modular strata are increasing from left to right.

Table 4. Adjacencies between \mathcal{A}-unimodal orbits in A_{5}.

$$
\begin{gathered}
8 \leftarrow 9 \quad \leftarrow \leftarrow 20 \leftarrow 21 \\
\\
\\
\\
\\
\\
\end{gathered}
$$

The adjacencies and the normal forms in Table 1 imply that all these orbits are unimodal. The adjacencies between the germs having 6 -jet $(x, x y+$ y^{6}) follow trivially from the conditions for the membership in the corresponding \mathcal{A}^{k}-orbits, $7 \leq k \leq 14$, over this 6 -jet. The adjacency $8 \leftarrow 15$ can be checked by deforming the germ of type 15 by a term $(0, t \cdot x y)$ and by
verifying that, for $t \neq 0$, this is equivalent to $8^{ \pm}$by coordinate changes. For the more extensive adjacency diagrams below, we will suppress such routine arguments.

Now consider the \mathcal{A}-orbits in A_{3} (see Table 3), these can only be adjacent to \mathcal{A}-orbits in $A_{\leq 3}$ and all \mathcal{A}-orbits in $A_{\leq 2}$ are simple. The \mathcal{A}-orbits of modality 2 all belong to the closure of type $30_{2,7}$. Those \mathcal{A}-orbits in the closure of type 19 , which do not also belong to the closure of type $30_{2,7}$, are all unimodal and their adjacencies are shown in Table 5. The following rules out most of the a priori possible adjacencies: the upper semi-continuity of the cusp and double-fold numbers shown in Table 1, the non-adjacency of \mathcal{A}-orbits arising in the subcases (a), with $\alpha=-3 / 2$, and (b) of \mathbf{D} (recall our remark above) and the non-adjacency between the members of the series $29_{3, l}$ and any of the orbits $27_{4, m}(m=4,5,6)$ and 28_{4} (which is due to the structure of the \mathcal{A}^{5}-orbits over $\left.j^{4} f=\left(x, y^{4}\right)\right)$. The possible adjacencies that remain can be checked by tedious calculations (using \mathcal{A}-versal unfoldings and coordinate changes), which show that all but three actually do occur. (The three adjacencies that do not occur are: $26_{5} \rightarrow 24_{6}, 27_{5,5} \rightarrow 24_{7}$ and $29_{3,5} \rightarrow 23$.) In an appendix we shall list bases for the normal spaces of the series of germs found in the present paper (Table 7), these determine the \mathcal{A}-versal unfoldings used in the adjacency calculations.

Table 5. Adjacencies between \mathcal{A}-unimodal orbits in A_{3}.

3.2. Case $m=2$ and $n=3$

We take Nabarro's classification [11] of germs of the form $f=$ $(x, g(x, y, z))$, where $g(0, y, z) \in m_{n}^{3}$, of \mathcal{A}_{e}-codimension ≤ 4 as our starting point. The proof of Theorem 2.3 in [11] implies that there are two \mathcal{A}^{2} orbits, namely $(x, 0)$ and $(x, x y)$, and that any \mathcal{A}-orbit over the former is at least trimodal (because it lies in the closure of the orbit of N_{12}, which has 3 moduli). Amongst the nine \mathcal{A}^{3}-orbits over the 2 -jet $(x, x y)$ listed in [11] the following four lie in the \mathcal{K}-orbit D_{4} and lead to \mathcal{A}-unimodal orbits:

$$
\begin{array}{cl}
\left(x, x y+y^{3}+\alpha y^{2} z+z^{3}\right), \alpha \neq 0, & \text { (a) } \\
\left(x, x y+y^{3}+z^{3}\right) & \text { (b) } \\
\left(x, x y \pm y^{2} z+z^{3}\right) & \text { (c) } \\
\left(x, x y \pm y^{3}+y z^{2}\right) & \text { (d) } \tag{d}
\end{array}
$$

One checks that the other five \mathcal{A}^{3}-orbits lead to \mathcal{A}-orbits of modality ≥ 2 which lie in the closure of D_{5}.

Over the 3 -jet in (a) we find the following \mathcal{A}^{4}-orbits:

$$
\begin{aligned}
f_{\alpha}=\left(x, x y+y^{3}+\alpha y^{2} z+z^{3}\right), \quad \alpha \neq-(27 / 4)^{1 / 3} \\
\left(x, x y+y^{3}-(27 / 4)^{1 / 3} y^{2} z+z^{3}+z^{4}\right) \\
\left(x, x y+y^{3}-(27 / 4)^{1 / 3} y^{2} z+z^{3}\right)
\end{aligned}
$$

According to [11] the first of these is 5 -determined. General 5 -jets over f_{α} are given by $\left(x, x y+y^{3}+\alpha y^{2} z+z^{3}+c z^{5}\right)\left(\right.$ for $\left.\alpha \neq(27 / 4)^{1 / 3}\right)$ and $(x, x y+$ $\left.y^{3}+(27 / 4)^{1 / 3} y^{2} z+z^{3}+c y^{5}\right)\left(\right.$ for $\left.\alpha=(27 / 4)^{1 / 3}\right)$. This yields the following \mathcal{A}-orbits:

$$
\begin{aligned}
&\left(x, x y+y^{3}+\alpha y^{2} z+z^{3} \pm z^{5}\right), \alpha \neq 0, \pm(27 / 4)^{1 / 3}, \text { type I } \\
&\left(x, x y+y^{3}+(27 / 4)^{1 / 3} y^{2} z+z^{3} \pm y^{5}\right) \\
&\left(x, x y+y^{3}+\alpha y^{2} z+z^{3}\right), \alpha \neq 0,-(27 / 4)^{1 / 3}, \text { type } \mathbf{I}^{\prime} \\
& \text { type II }
\end{aligned}
$$

Note that type I corresponds to N_{1} in [11] and that the union of types I and \mathbf{I}^{\prime} form a unimodal stratum for which there is no global normal form (the orbit \mathbf{I}^{\prime} is "special", because the z^{5}-term has to be replaced by y^{5}). When the coefficients c of both z^{5} and y^{5} vanish, we can combine both cases again to a single normal form II, which corresponds to N_{2} in [11]. The \mathcal{A}_{e}-codimensions of $\mathbf{I}, \mathbf{I}^{\prime}$ and $\mathbf{I I}$ are 3 (2 for modular stratum), 3 and 4 (3 for modular stratum).

The third \mathcal{A}^{4}-orbit above lies in the closure of the second, and the second is equivalent to:

$$
\left(x, 27 x y+27 y^{3}-27 y^{2} z+4 z^{3}+z^{4}\right)
$$

Above this there is a single \mathcal{A}^{6}-orbit, namely $h_{\beta}=\left(x, 27 x y+27 y^{3}-27 y^{2} z+\right.$ $4 z^{3}+z^{4}+\beta y^{6}$), which is 6 -determined and has \mathcal{A}_{e}-codimension 4 (the codimension of the modular stratum being 3). The orbit of h_{β}, which is adjacent to the unimodal germ \mathbf{I}, is at least bimodal and has cusp number $c\left(h_{\beta}\right)=5$.

Over the 3 -jet in case (b) we find the \mathcal{A}^{k+1}-orbits, $k \geq 3$, given by $\left(x, x y+y^{3}+z^{3}\right)$ and $\left(x, x y+y^{3}+z^{3} \pm y^{k} z\right)$. The latter is sufficient, hence we obtain the series:

$$
\left(x, x y+y^{3}+z^{3} \pm y^{k} z\right), \quad k \geq 3, \quad \text { type } \mathbf{V}_{k},
$$

having \mathcal{A}_{e}-codimension k (\mathbf{V}_{3} and \mathbf{V}_{4} correspond to N_{3} and N_{7} in [11]).
The \mathcal{A}-orbits over the 3 -jet in case (c) have been classified completely in [11]: they are of type $N_{4}=\mathbf{I I I}$ and $N_{6}=\mathbf{I V}$, which have \mathcal{A}_{e}-codimension 3 and 4 , respectively, and are both 5 -determined.

Finally, one checks that the \mathcal{A}-orbits over the 3 -jet in case (d) all belong to the series:

$$
\left(x, x y \pm y^{3}+y z^{2}+z^{2 k+1}\right), \quad k \geq 2, \quad \text { type } \mathbf{V I}_{2 k+1}
$$

This is $(2 k+1)$-determined and has \mathcal{A}_{e}-codimension $k+1$. The first two members of this series correspond to types N_{5} and N_{11} in [11].

All the germs in Table 2 lie in the closure of \mathbf{I}, their \mathcal{A}-modality is therefore at least 1 , and their \mathcal{K}-type is D_{4}. Hence they can only be adjacent to \mathcal{A}-orbits within the \mathcal{K}-orbits of type $A_{\leq 3}$ and D_{4}. All \mathcal{A}-orbits in $A_{\leq 2}$ are simple, and the \mathcal{K}-types of the critical sets of all non-simple \mathcal{A}-orbits in A_{3} are not of type A_{k}, for any k. On the other hand, the critical sets of all the germs in Table 2 are of type A_{k} (in the case of \mathbf{V}_{k} of type A_{k-1}, in all other cases of type A_{1}) - hence these germs can only be adjacent to \mathcal{A}-simple orbits in $A_{\leq 3}$. One calculates that the cusp numbers of the germs in Table 2 are 4, except for type \mathbf{V}_{k}, where $c\left(\mathbf{V}_{k}\right)=k+2$. Recall that the \mathcal{A}-orbits in D_{4} in the closure of

$$
h_{\beta}=\left(x, 27 x y+27 y^{3}-27 y^{2} z+4 z^{3}+z^{4}+\beta y^{6}\right)
$$

above are at least bimodal and have at least 5 cusps. These orbits lie over the special orbit $\alpha=-(27 / 4)^{1 / 3}$ of the closure of the \mathbf{I} stratum, whereas the \mathbf{V}_{k} orbits lie over the special orbit $\alpha=0$. Hence none of the \mathbf{V}_{k} is adjacent to the closure of $\mathcal{A} \cdot h_{\beta}$, and none of the other germs in Table 2 is adjacent to $\mathcal{A} \cdot h_{\beta}$ because of the upper semicontinuity of the cusp number. It now follows that all germs in Table 2 are \mathcal{A}-unimodal. Table 6 below shows the adjacencies between these unimodal germs.

Table 6. Adjacencies between \mathcal{A}-unimodal orbits in D_{4}.

Appendix: \mathcal{A}-normal spaces for series of germs

Here we list the normal spaces $N \mathcal{A} \cdot f:=m_{n} \theta_{f} / T \mathcal{A} \cdot f$ for the series of non-simple germs f (the normal spaces for the exceptional germs, not belonging to a series, can easily be calculated and are not listed to economize on space). Note that, in the adjacency calculations, it is more convenient to work with (origin preserving) \mathcal{A}-versal unfoldings.

Table 7. \mathcal{A}-normal spaces of non-simple series.

Series	basis for normal space
$24_{k}, k \geq 6$	$\mathbb{R}\left\{y, y^{2}, y^{3}, x y^{2}, x y, \ldots, x^{k-1} y\right\} \cdot \partial / \partial Y$
$25_{k}, k \geq 4$	$\mathbb{R}\left\{y, y^{2}, y^{3}, x y^{2}, x y, \ldots, x^{k-1} y\right\} \cdot \partial / \partial Y$
$26_{k}, k \geq 4$	$\mathbb{R}\left\{y, y^{2}, y^{3}, x y, \ldots, x^{k-1} y, x y^{2}, \ldots, x^{k-2} y^{2}\right\} \cdot \partial / \partial Y$
$27_{k, l}$	$\mathbb{R}\left\{y, y^{2}, y^{3}, x y, \ldots, x^{k-1} y, x y^{2}, \ldots, x^{l-1} y^{2}\right\} \cdot \partial / \partial Y$
	$k \geq 4, k \leq l \leq 2 k-2$
$28_{k}, k \geq 4$	$\mathbb{R}\left\{y, y^{2}, y^{3}, x y, \ldots, x^{k-1} y, x y^{2}, \ldots, x^{2 k-2} y^{2}\right\} \cdot \partial / \partial Y$
$29_{k, l}$	$\mathbb{R}\left\{y, y^{2}, y^{3}, x y, \ldots, x^{l-1} y, x y^{2}, \ldots, x^{k-1} y^{2}\right\} \cdot \partial / \partial Y$
	$k \geq 3, l \geq k+2,2 l \neq 3 k$
$30_{k, l}$	$\mathbb{R}\left\{y, y^{2}, y^{3}, x y, \ldots, x^{l-1} y, x y^{2}, \ldots, x^{k-1} y^{2}\right\} \cdot \partial / \partial Y$
	$k \geq 2,3 k+1 \leq l \leq 6 k$
$30_{k, l}^{-}\left[\pm(2 / 3)^{3 / 2}\right]$	$\mathbb{R}\left\{y, y^{2}, y^{3}, x y, \ldots, x^{l-1} y, x y^{2}, \ldots, x^{k-1} y^{2}\right\} \cdot \partial / \partial Y$
	$k \geq 2, l \geq 3 k+1$
$31_{k}, k \geq 2$	$\mathbb{R}\left\{y, y^{2}, y^{3}, x y, \ldots, x^{6 k} y, x y^{2}, \ldots, x^{k-1} y^{2}\right\} \cdot \partial / \partial Y$
$\mathbf{V}_{k}, k \geq 3$	$\mathbb{R}\left\{y, y^{2}, z, z^{2}, y z, \ldots, y^{k-1} z\right\} \cdot \partial / \partial Y$
$\mathbf{V I}_{2 k+1}, k \geq 2$	$\mathbb{R}\left\{y, z, y^{2}, y z, z^{2} ; z^{3}, z^{5}, z^{7}, \ldots, z^{2 k-1}\right\} \cdot \partial / \partial Y$

Acknowledgement I am grateful to Ana Nabarro for valuable correspondence about the classification of map-germs from 3-space into the plane.

References

[1] Bruce J.W., du Plessis A.A. and Wall C.T.C., Determinacy and unipotency. Inventiones Math. 88 (1987), 521-554.
[2] Bruce J.W., Kirk N. and du Plessis A.A., Complete transversals and the classification of singularities. Nonlinearity 10 (1997), 253-275.
[3] Dimca A. and Gibson C.G., Contact unimodular germs from the plane to the plane. Quart. J. Math. Oxford 34 (1983), 281-295.
[4] Fukuda T. and Ishikawa G., On the number of cusps of stable perturbations of a plane-to-plane singularity. Tokyo J. Math. 10 (1987), 375-384.
[5] Fukui T., Nuno Ballesteros J.J. and Saia M.J., On the number of singularities in generic deformations of map germs. J. London Math. Soc. 58 (1998), 141-152.
[6] Gaffney T. and Mond D., Weighted homogeneous maps from the plane to the plane. Math. Proc. Cambridge Phil. Soc. 109 (1991), 451-470.
[7] Lander L., The structure of Thom-Boardman singularities of stable germs with type $\Sigma^{2,0}$. Proc. London Math. Soc. 33 (1976), 113-137.
[8] Martinet J., Singularities of smooth functions and maps. LMS Lecture Note Series 58. Cambridge University Press, 1982.
[9] Mather J.N., Stability of C^{∞}-mappings IV: classification of stable germs by \mathbb{R} algebras. Publ. Math. IHES 37 (1970), 223-248.
[10] Mather J.N., Stability of C^{∞}-mappings VI: the nice dimensions. Proceedings of Liverpool Singularities Symposium I, (ed. C.T.C. Wall), Springer Lecture Notes in Mathematics 192 (1971), 207-253.
[11] Nabarro A.C., Projections of hypersurfaces in \mathbb{R}^{4} to planes. Preprint, ICMC-USP, Sao Carlos, Brazil, 2000.
[12] Nabarro, A.C., Sobre a geometria local de hipersuperficies em \mathbb{R}^{4}. PhD thesis, ICMC-USP, Sao Carlos, Brazil, 2000.
[13] du Plessis A.A., On the determinacy of smooth map-germs. Inventiones Math. 58 (1980), 107-160.
[14] Rieger J.H., Families of maps from the plane to the plane. J. London Math. Soc. 36 (1987), 351-369.
[15] Rieger J.H. and Ruas M.A.S., Classification of \mathcal{A}-simple germs from k^{n} to k^{2}. Compositio Math. 79 (1991), 99-108.
[16] Wall C.T.C., Finite determinacy of smooth map-germs. Bull. London Math. Soc. 13 (1981), 481-539.
[17] Wall C.T.C., Classification of unimodal isolated singularities of complete intersections. Proceedings of Symposia in Pure Mathematics 40:2, American Mathematical Society, Providence, (1983), 625-640.

Institut für Algebra und Geometrie
Martin-Luther-Universität Halle
D-06099 Halle, Germany
E-mail: rieger@mathematik.uni-halle.de

[^0]: 2000 Mathematics Subject Classification : 58K40, 58K50, 58 K 60.

