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Abstract. A collection of n (possibly singular) semi-algebraic sets in Rd of dimension d� 1,
each defined by polynomials of maximal degree d, has YððndÞd Þ first-order Voronoi cells
(for any fixed d ). In the nonhypersurface case, where the maximal dimension of the semi-alge-

braic sets is m4 d� 2, the number of first-order Voronoi cells is bounded above by Oðnmþ1ddÞ
(for nonsingular semi-algebraic sets) or by OððndÞd Þ (in general). The complexity of the entire
kth-order Voronoi diagram of a generic collection of n non-singular real algebraic sets in Rd of

maximal dimension m < d and maximal degree D is Oðnminðdþk;2d ÞD2ðmþ1Þd
Þ.
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1. Introduction and Notation

The classical first-order Voronoi diagram of a set of points X ¼ fX1; . . . ;Xng in Rd is

a decomposition of Rd into connected regions, called Voronoi cells, whose points are

closer to some given point in X than to any other point in X. The corresponding

regions in the kth-order Voronoi diagram consist of points that are closer to some

given subset of points Y � X of cardinality k than to any point in X nY. More gene-

rally, one can consider Voronoi diagrams of collections X of real algebraic (or of

semi-algebraic) sets X1; . . . ;Xn in Rd (d being fixed but arbitrary) of maximal degree

D and maximal dimension m :¼ dimX < d. If Vk denotes the union of the bound-

aries of the kth-order Voronoi cells associated with X then it is known that there

are at most Oðnminðdþk;2d ÞD2ðmþ1Þd
Þ connected regions of Rd

nVk (see Propositions

3.2 and 6.1 of [8]).

In the present paper, we present sharper bounds for the number of first-order

Voronoi cells of collections of (possibly singular) real algebraic and semi-algebraic

sets, which are asymptotically tight in the hypersurface case, where m ¼ d� 1. We

also give an upper bound for the complexity of the entire kth-order Voronoi diagram

of a generic collection of nonsingular real algebraic sets X.

Before stating the main results, we have to fix some notation. The Voronoi dia-

gram of order k of a set S :¼ fX1; . . . ;Xng of (semi-)algebraic sets Xi � Rd is defined

as follows. Set mpðXiÞ :¼ infq2Xi
kq� pk2 and let ~S � S be a subset with k elements,

14 k4 n� 1. Then

Geometriae Dedicata 98: 81–94, 2003. 81
# 2003 Kluwer Academic Publishers. Printed in the Netherlands.



Vkð ~SÞ :¼ f p 2 Rd : mpðXiÞ < mpðXjÞ; 8ðXi;XjÞ 2 ~S
 ðSn ~SÞg

is the kth-order Voronoi cell of ~S (which, in general, is not connected). The kth-order

Voronoi surface Vk of S is the union of the boundaries of such Voronoi cells, i.e.

Vk :¼
S

~S�S @Vkð ~SÞ, and the kth-order Voronoi diagram is the arrangement AðVkÞ.

In the special case of first-order Voronoi diagrams (where ~S ¼ fXig) we shall simply

write

V1ðXiÞ :¼ f p 2 Rd : mpðXiÞ < mpðXjÞ; 8j 6¼ ig:

Recall the notion of a singular stratification of a semi-algebraic set M. The singu-

lar set SðM Þ of M has strictly lower dimension than M. Hence, setting

Siþ1 :¼ SðSiðM ÞÞ and S 0ðM Þ :¼ M, the set SdimMþ1ðM Þ will be empty, and taking

as strata the connected components of SiðM ÞnSiþ1ðM Þ, for 04 i4 dimM, we

obtain a stratification of M into connected submanifolds of dimension

j ¼ 0; . . . ; dimM, called j-strata. This stratification is called singular stratification

ofM. In general, the strata of the singular stratification do not satisfy regularity con-

ditions, such as the Whitney conditions ðaÞ or ðbÞ. We shall see, however, that the

semi-algebraic Voronoi boundaries M ¼ Vk generically do not contain nonimmer-

sive points, so that their singular stratification trivially satisfies the Whitney

conditions. Given a (possibly singular) semi-algebraic hypersurface M � Rd, we

denote the arrangement cut-out by M by AðM Þ. We denote by jAðM Þj the size of

this arrangement, that is the number of i-cells, 04 i4 d, in AðM Þ, and by eiðM Þ

the number of cells of dimension i. Here the i-cells are defined as follows: for

i < d the i-cells are the i-strata of the singular stratification of M and as d-cells we

take the connected regions of Rd
nM.

Using this notation, edðVkÞ denotes the number of Voronoi cells of order k and

jAðVkÞj denotes the complexity (or size) of the kth-order Voronoi diagram. Further-

more, let n denote the number of (semi-)algebraic sets Xi, m the maximal dimension

of the Xi, d the maximal degree of the defining (in-) equations of the Xi and D the

maximal degree of the Xi. (If ci ¼ d�mi is the codimension of Xi, where Xi is defined

as a complete intersection, and di is the maximal degree of the defining polynomials

of Xi then Di :¼ degXi � Oðdcii Þ.) Recall that the ambient dimension d is assumed to

be fixed (but arbitrary). Also, we use the standard O-, O- and Y-notation for upper,

lower and asymptotically tight bounds.

The main bounds obtained in the present paper are summarized in the following

statement.

THEOREM 1.1. ðaÞ For a collection of n semi-algebraic sets Xs
i ð possibly singular,

unless the contrary is stated Þ in Rd of maximal dimension m, each defined by a constant

number of polynomials of degree 4d and intersecting pairwise properly, we have the

following bounds for the number of first-order Voronoi cells. When all Xs
i have

dimension d� 1: edðV1Þ � YððndÞd Þ: In higher codimension c ¼ d�m5 2:
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edðV1Þ � Oðnmþ1dd Þ ð for nonsingular Xs
i Þ;

edðV1Þ � OððndÞd Þ;

edðV1Þ � OððndÞmþ1
Þ:

ðbÞ For a generic collection of nonsingular real algebraic sets of maximal degree D we

have the following bound for the complexity of the kth-order Voronoi diagram:

jAðVkÞj � Oðnminðdþk;2d ÞD2ðmþ1Þd
Þ:

Part ðaÞ is a summary of the bounds in Section 2 (see 2.1 to 2.5) and part ðbÞ is the

content of Theorem 3.1.

Remarks. (i) The bound for jAðVkÞj was already stated in [8], but the proof there

contains a gap – see Section 3.

(ii) Note that the sets in the collection of (semi-)algebraic sets studied in the pre-

sent paper are allowed to intersect and to have several connected components. This is

in contrast to most other studies in the literature on Voronoi diagrams of semi-

algebraic sets, such as [9] and [1]. Restricting to collections of n disjoint and connec-

ted semi-algebraic sets trivially yields n first-order Voronoi regions – but, even in this

restricted situation, estimates for the complexity of the entire Voronoi diagram (of

any order) are highly non-trivial.

(iii) The OððnDÞd Þ lower bound for edðV1Þ in the hypersurface case (where D ¼ d)
is, of course, also a lower bound for jAðV1Þj, and there is a large gap between this

and our Oðndþ1D2d2
Þ upper bound. For curves in R2 one can easily obtain an asymp-

totically tight OððnDÞ2Þ-bound (see Proposition 3.3). But in higher dimensions it

seems unlikely that the gap between the lower bound for edðV1Þ and the upper bound

for jAðV1Þj can be eliminated completely: e.g. for nonintersecting convex semialge-

braic sets defined by polynomials of bounded degree the best available upper bound

for jAðV1Þj is OðndþEÞ, E > 0 arbitrarily small [9], but edðV1Þ ¼ n. And for point-sets

jAðV1Þ � Yðndd=2eÞ, but edðV1Þ ¼ n.

The paper is organized as follows. Section 2 contains the bounds for the num-

ber of first-order Voronoi cells of a collection X1; . . . ;Xn of (semi-)algebraic sets.

It is not hard to see that each arcwise connected component C of

XinðXi \
S

j6¼i XjÞ contributes at most one first-order Voronoi cell, which reduces

the problem to finding bounds for the number of such components C. The deri-

vation of the bounds for the complexity of the entire kth-order Voronoi diagram

in Section 3 is more technical. The kth-order Voronoi boundary Vk is a subset of

the bifurcation set of the family of distance-squared functions on X1; . . . ;Xn. We

first construct the singular stratification of a certain semi-algebraic set Rk (which

is finer than the singular stratification of Vk and coarser than that of the bifurca-

tion set) and count its strata under certain genericity conditions on X1; . . . ;Xn,

and then show that the set of collections X1; . . . ;Xn for which these conditions

fail is closed.
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2. The Number of First-Order Voronoi Cells

We say that the intersection of two sets X and Y is proper if

codimX \ Y > minðcodimX; codimY Þ:

This, rather weak, condition implies that no component of one set can lie in some

component of the other. The regular intersection condition, given by

codimX \ Y ¼ codimXþ codimY;

is in the nonhypersurface case too strong to yield interesting bounds for the number

of first-order Voronoi cells, see the remark following Proposition 2.1.

The bounds in the present section are first stated and proved under the assumption

that certain algebraic sets are nonsingular, this assumption will be eliminated at the

end of this section (see Theorem 2.4 and Corollary 2.5). We begin with the following

bound.

PROPOSITION 2.1. A collection of nonsingular real algebraic sets

X1; . . . ;Xn � Rd

of maximal dimension m < d, having pairwise proper intersections, has at most

Oðnmþ1dd Þ connected, first-order Voronoi cells.
Proof. Let mi ¼ dimXi, Xi ¼ Vðh1; . . . ; hd�mi

Þ, X ¼
S

i Xi and X̂i ¼
S

j6¼i Xj. The

proposition follows from the following two claims.

CLAIM 1. Let C be an arcwise connected component of XinXi \ X̂i, then V1ðC Þ is

path-connected.

Given any pair of points p1; p2 2 V1ðC Þ let q1, q2 be the respective nearest points in

C ðif pi has more than one nearest point qi 2 C, pick any one of themÞ. Connecting pi
and qi, i ¼ 1; 2, by straight line-segments and q1 and q2 by any path in C yields a path

in V1ðC Þ with endpoints p1 and p2. Notice that all ðd� 1Þ-spheres passing through qi
and whose centers lie on the line segment piqi are contained in the sphere through qi
with center pi. Hence none of these spheres contains any point of

S
XinC, which

implies that piqi � V1ðC Þ.

The number of connected regions of Rd
nV1 is therefore bounded above by the

number of components C of X. The desired upper bound therefore follows from

CLAIM 2. Each XinXi \ X̂i has at most Oðnmidd Þ components C, hence there are n

times that many components on X.

Note that Xi ¼ Zðh21 þ � � � þ h2d�mi
Þ (here Z denotes the real zero-set) and

deg
P

i h
2
i � OðdÞ. Furthermore X̂i ¼

S
j6¼i Xj is the union of n� 1 closed real alge-

braic sets Xj, each defined by some polynomial of degree OðdÞ. A result of Basu

(Theorem 1 of [2]) then implies that
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X
j

bjðXi \ X̂iÞ � ðn� 1ÞmiOðdd Þ

(here bj denotes the jth Betti number, note that the Milnor bound would merely give

OððndÞd Þ). Let

Xi ¼
[
r

Xi;r ðdisjoint unionÞ;

then, by Alexander duality,

Hd�q�1ðXi;r \ X̂iÞ ffi ~HqðXi;rnXi;r \ X̂iÞ

(here ~H denotes the reduced homology group), hence

~b0ðXinXi \ X̂iÞ � Oðnmidd Þ:

Therefore there are at most Oðnmidd Þ components C on Xi, so in total Oðnmþ1dd Þ
such components on X. &

Remark. The above proof shows that a collection of algebraic sets of codimension

5 2, having pairwise regular intersections, has at most Oðn � dd Þ first-order Voronoi
cells (note that Xi \ X̂i has codimension 52 in Xi). Hence, as in the case of non-

intersecting sets Xi, we get a combinatorially trivial bound.

The next result shows that the estimate above is asymptotically tight in the hyper-

surface case.

PROPOSITION 2.2. A collection of real algebraic hypersurfaces

X1; . . . ;Xn � Rd;

having pairwise proper intersections, has at most YððndÞd Þ connected, first-order

Voronoi cells.

Proof. We have to show that the maximal number of connected Voronoi cells

is OððndÞd Þ, the corresponding upper bound is a special case of the previous

proposition.

Consider the following collection of dn � YðnÞ algebraic sets Xi; j of degree d
(recall that d � Oð1Þ):

Xi; j :¼ ðx1; . . . ; xd Þ 2 Rd :
Yd
‘¼1

ðxi � ‘n� jÞ ¼ 0

( )
;

where 14 i4 d and 04 j4 n� 1. The set X :¼
S
Xi; j has YððndÞd Þ components C.

(Notice that the Xi; j consist of d parallel hyperplanes. There are nd hyperplanes per-

pendicular to each coordinate direction xi belonging to the sets Xi; j, 04 j4 n� 1.

Ordering these parallel hyperplanes according to their xi-coordinates, the index j

of the Xi; j containing them is periodic with period n.) &
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Remark. In the nonhypersurface case, where m4 d� 2, this construction yields

an OððndÞmþ1
Þ lower bound, which is tight in terms of n but not in terms of d.

Next, we show that the argument leading to Proposition 2.1 can be adapted to the

semi-algebraic case, giving the following estimate.

COROLLARY 2.3. Consider closed semi-algebraic sets Xs
i of ð pureÞ dimension mi,

which are unions of a constant number of sets of the form Bi; j ¼

fx 2 Ai; j : k1ðxÞ5 0; . . . ; krðxÞ5 0g, where Ai; j ¼ Zðh1; . . . ; hd�mi
Þ is nonsingular of

dimension mi, and where r � Oð1Þ and the ha, kb are polynomials of degree at most d.
Setting Xi ¼

S
j Ai; j � Xs

i , a collection of such semi-algebraic sets Xs
1; . . . ;X

s
n � Rd of

maximal dimension m < d, such that the Xi � Xs
i have pairwise proper intersections,

has at most Oðnmþ1ddÞ connected, first-order Voronoi cells. Furthermore, when all the

Xs
i have dimension d� 1 then there are at most YððndÞd Þ first-order Voronoi cells.
Proof. Claim 1 in the proof of Proposition 2.1 also holds with Xs

i in place of Xi,

hence we want to show that each Xs
inX

s
i \ X̂s

i has at most Oðnmid2dÞ components C,

hence there are n times that many components on Xs (where Xs ¼
S

i X
s
i and

X̂s
i ¼

S
j6¼i X

s
j ).

Note that if Ai; j is the real zero-set of Pj :¼ h21 þ � � � þ h2d�mi
then Xi ¼ Zð

Q
j PjÞ.

The latter, being the union of a constant number of non-singular mi-dimensional sets

Ai; j, is therefore the zero-set of a polynomial of degree OðdÞ. Cutting each Ai; j with

the union of X̂i and the sets k�1
b ð0Þ, 14 b4 r, where the kb are the polynomials

appearing in the inequalities defining Bi; j, we obtain at most Oðnmidd Þ components

C on each Ai; j (by the argument in the proof of Proposition 2.1) and hence at most

Oð1Þ times that many components C on Xi. Finally note that this decomposition of

Xi into the sets C and their boundaries induces a decomposition of Xs
i which is a

refinement of the decomposition into connected regions of Xs
inX

s
i \ X̂s

i and their

boundaries. This implies the desired bound for the number of regions of the latter

decomposition.

The last statement of the proposition follows from Proposition 2.2. &

Remark. The condition that the algebraic sets Xi (in Proposition 2.1) and Ai; j (in

Corollary 2.3) be nonsingular is required for the use of the Alexander duality. We

now remove this regularity condition in the hypersurface case.

Let Y ¼ ZðhÞ be a singular real algebraic set of dimension d� 1 then, for all

E 2 ð0; cÞ and c small enough, U :¼ fx : h2ðxÞ4E2g is a neighborhood of Y in R
d

(see Chapter 3.8 of [3]) and the sets YE ¼ Zðh2 � E2Þ are non-singular real algebraic

hypersurfaces (by Sard’s theorem) such that Y0 ¼ Y. Now take Y ¼ Xi (the argu-

ment for the Ai; j being analogous): the n� 1 hypersurfaces making up X̂i intersect

Xi properly, hence – by restricting to a subinterval ð0; c0Þ � ð0; cÞ if necessary – we

can assume that these hypersurfaces are transverse to the YE and that the number

of regions, N say, of YEnYE \ X̂i is locally constant for E 2 ð0; c0Þ. The corresponding
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number of regions for Xi ¼ Y0 is clearly bounded by N (any such region belongs to

the closure of one of the N regions of UnU \ ðX̂i [ XiÞ). Hence we have shown that

THEOREM 2.4. The statements in Propositions 2:1 and 2:2 and in Corollary 2:3 hold

without the regularity ðnonsingularityÞ condition for the sets Xi and Ai; j when these are

ðd� 1Þ-dimensional: i.e. collections of algebraic or semi-algebraic sets of dimension

d� 1 have YððndÞd Þ first-order Voronoi cells.

In higher codimension we have the following, less sharp, bound in the singular

case.

COROLLARY 2.5. A collection of n algebraic or semi-algebraic sets ðnot necessarily

nonsingularÞ, each defined by polynomials of degree 4d and having pairwise proper

intersections, has at most OððndÞd Þ first-order Voronoi cells.
Proof. Suppose Y ¼ Zðh1; . . . ; hrÞ is a singular real algebraic set of codimension r,

then we define

U ¼ x :
Xr
a¼1

h2aðxÞ4E2
( )

and YE ¼ Z
X
a

h2a � E2
 !

(as in the hypersurface case above). We now argue as in the hypersurface case, except

that we replace each set X̂i, which is the union of algebraic sets Xj ¼ Zð f1; . . . ; fkÞ

(j 6¼ i), by a union of hypersurfaces Hj ¼ Zð fbÞ � Xj, b 2 f1; . . . ; kg, that do not con-

tain Xi (such hypersurfaces exist, since Xi and Xj intersect properly). &

3. The Complexity of the kth-Order Voronoi Diagram

In the present section we study collections X1; . . . ;Xn of non-singular algebraic sets,

and we impose some extra ‘genericity conditions’ and show that the collections of

algebraic sets for which these conditions fail form some closed subset of positive

codimension in the space of all collections of some given degree. In fact, the regular-

ity of the Xi is also ‘generic’ in this sense. We begin with a brief summary of the

relation between Voronoi boundaries and bifurcation sets of families of distance-

squared functions (see [8] for more details), the relation between such bifurcation sets

and evolutes and symmetry sets – mostly for curves and surfaces in 2- and 3-space –

has been studied in [4, 5, 7].

The order k Voronoi boundary Vk is a subset of the bifurcation set B of the family

of distance-squared functions on the Xi:

Fi: Rd

 Xi ! Rd


 R; ð p; qÞ 7! ð p; fið p; qÞ :¼ kq� pk2:

Locally (i.e. composing with a local parametrization of the mi-manifold Xi at q) this

is a d-parameter family of functions inmi variables, and the simplest singularities that

such a function can have are the Ak-singularities, given by xkþ1
1 þ

Pmi

j¼1 Ejx
2
j , Ej ¼ �1,

at the origin (an A1 point is a Morse critical point). Let Aðk1;...;ksÞ denote the s-local
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singularity of a function f, where f has s critical points q1 to qs, of type Ak1 to Aks ,

having the same critical values fðqjÞ. In order to avoid redundancy we suppose the

sequence k1; . . . ; ks to be nonincreasing. Given some type of singularityW, we denote

by �W the closure of W (in the space of function-germs) – hence type �W means a type

W singularity or something more degenerate. We can now define the bifurcation set B
of the family of distance-squared functions on a collection X1; . . . ;Xn of algebraic

sets in Rd. Let Ei be the evolute of Xi (the set of point p 2 Rd for which fið p; :Þ has

an �A2 singularity at some q 2 Xi), Si the intra-set level-bifurcation set (the points p

for which fið p; :Þ has an �Að1;1Þ singularity at some point pair q1; q2 2 Xi) and Si; j

the inter-set level-bifurcation set (the points p for which fið p; :Þ and fjð p; :Þ have �A1

singularities at q1 2 Xi and q2 2 Xj such that fið p; q1Þ ¼ fjð p; q2Þ – this is simply an
�Að1;1Þ singularity of the distance-squared function on X ¼

S
i Xi with critical points

in different sets Xi, Xj). Now B ¼ E [ S [ Y; where

E ¼
[n
i¼1

Ei; S ¼
[n
i¼1

Si and Y ¼
[

14i<j4n

Si; j:

The sets Vk are subsets of the component Y of the bifurcation set.

For a collection of real algebraic sets X1; . . . ;X
n in Rd of maximal dimension m

defined by polynomials of degree d, the degree of smallest real algebraic set B̂ con-

taining the semi-algebraic bifurcation set B is at most Oðn2D2ðmþ1Þ
Þ (see Section 3.2 of

[8]). Using Milnor’s bound for the Betti numbers [6] and Alexander duality one finds

that R
d
nB̂ and, hence, R

d
nB and R

d
nVk, have at most Oððdeg B̂Þd Þ � Oðn2dD2ðmþ1Þd

ÞÞ

connected components (Proposition 3.2 (iii) of [8]). Furthermore, it is known that the

singular stratification of Vk has at most Oðnminðdþk;2d ÞÞ strata when D is bounded by

some constant (Proposition 6.1 of [8]). Finally, Proposition 3.2 (iii) in [8] also states

that the number of strata of the singular stratification of B has at most

Oððdeg B̂Þd Þ � Oðn2dD2ðmþ1Þd
Þ strata (recall that jAðBÞj, the size of the arrangement

defined by B, is number of strata of the singular stratification plus the number of

regions in the complement of B) – but the proof of this statement uses the unproven

assertion that the singular stratification of a singular hypersurface V � Rd has at

most OððdegXÞd Þ strata and, hence, contains a gap.

A singular stratification of Vk can be obtained by deleting certain strata of a sin-

gular stratification of B – combining Propositions 6.1 and 3.2 (iii) from [8] would

therefore give an Oðnminðdþk;2kÞD2ðmþ1Þd Þ
Þ bound for the complexity of the kth-order

Voronoi diagram. Rather than filling the gap in the proof of 3.2 (iii) by proving

the above-mentioned assertion, we will use the construction in the proof of 6.1, with-

out the assumption that D � Oð1Þ, together with the observation that Vk generically

does not contain nonimmersive points p (the curvature sphere with such a centre p

generically violates the Voronoi property of any order k) to prove this bound.

THEOREM 3.1. Let X1; . . . ;Xn � Rd be a generic collection of real algebraic sets of

maximal dimension m < d, then
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jAðVkÞj � Oðnminðdþk;2kÞD2ðmþ1Þd Þ
Þ:

Proof. Define the following subsets of the inter-set level-bifurcation set

Y ¼
S

14i<j4n Si; j and of
S

i Xi, respectively: let Yðr1;...;rsÞ be the locus of centres of

(exactly) s concentric (exactly) ri-tangent spheres, ri 5 2, to
S

i Xi (i.e. spheres tan-

gent to
S

i Xi at ri distinct points) and let

Sðc1;...;csÞ ¼
\
i2L

Xi; L � f1; . . . ; ng; jLj ¼ t5 2; ci ¼ d�mi

(with nonincreasing index sequences r1; . . . ; rs and c1; . . . ; ct in order to avoid redun-

dancy). Furthermore, we use the notation �Yðr1;...;rsÞ (and analogously �Sðc1;...;csÞ) for the

closure of this set, which is the locus of centres of at least s concentric 5ri-tangent

spheres.

We can now state the genericity conditions on the collections of algebraic sets.

GENERICITY CONDITIONS. Let X be the space of collections X of n algebraic

sets Xi of dimension mi (and codimension ci ¼ d�mi) of maximal degree D, X
can be identified with some semi-algebraic subset of the finite-dimensional space

of coefficients of
Pn

i¼1 ci polynomials in d variables of degree 4D. (Note that not

all choices of coefficients yield mi-dimensional real algebraic sets Xi.) We now define

three subsets U, V and W of X , which will be shown to be closed, and call any col-

lection X 2 XnU [ V [W generic.

Let U be the set of collections X2X containing some singular Xi, and let V be the

set of X 2 X for which the �A3-stratum in E fails to be closed and of positive codimen-

sion. Finally define W, corresponding to degenerate X for which Y has ‘excess

intersection’, as follows:

W ¼ X 2 X : 9s5 1; 9ri 5 2 : dimYðr1;...;rsÞ > dþ s�
Xs
i¼1

ri or

(

9t5 2; 9ci 5 1 : dimSðc1;...;ctÞ > d�
Xt
i¼1

ci or

9s; ci 5 1; 9t; rj 5 2 : dimðSðc1;...;ctÞ \ Yðr1;...;rsÞÞ

> dþ s�
Xt
i¼1

ci �
Xs
j¼1

rj

)
:

The proof that U [ V [W is closed in X will be postponed to Lemma 3.2 below.

We want to count the strata of the singular stratification of a certain ‘intermediate

set’ Rk, in the sense that Vk � Rk � Y, which contains all the strata of the singular

stratification of Vk. In order to define this stratification, we need some definitions.

The support set of a r-tangent sphere is the set of Xi that are tangent to this sphere.

The radius of a r-tangent sphere tends to zero as its center approaches the self-inter-

section locus of
S

i Xi, we call such spheres vanishing spheres. A minimal r-tangent

sphere is the smallest one amongst those with given centre and support set, a minimal
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r-tangent sphere does not contain any points of its support set in its interior. Note

that any vanishing sphere is minimal and that any nonminimal sphere violates the

Voronoi property for any order k.

We can now construct the sets Rk: roughly speaking, we are going to delete from Y

certain ‘branches’ of dimension d� 1 that cannot belong to Vk.

First, we decompose the inter-surface level bifurcation set Y into certain ‘branches’

which, for generic arrangements X, will be ðd� 1Þ-dimensional. Let BðYÞ denote the

set of connected components (‘branches’) of Yn �Yð3Þ [ �Sð1;1Þ. Note that all points of

such a ‘branch’ lie either in Vk � Y or in YnVk, because for all these points we have

a pair of critical points of the distance-squared function whose critical value is dis-

tinct from all other critical values.

Next, we decompose the self-intersection locus of Y into connected components

of i-fold intersections, i ¼ 2; 3; . . . ; s and compare the radii of 52-tangent spheres

associated to the i branches of BðYÞ passing through an i-fold intersection point. If,

at any point p of the self-intersection locus, the 52-tangent sphere associated with

some branch of BðYÞ does not belong to the k smallest minimal spheres with centre

p (including the vanishing sphere if p 2 Sðc1;...;ctÞ) and distinct support sets then this

branch cannot belong to Vk. Deleting all such branches from Y yields the set Rk.

To be a bit more precise, let L be the set of ‘strata’ of the ‘stratification’ of the self-

intersection locus of Y into connected components of Yðr1;...;rsÞ (s; ri 5 2), Sðc1;...;ctÞ

(t5 2) and Sðc1;...;ctÞ \ Yðr1;...;rsÞ (t; ri 5 2, s5 1). The reason for the quotes is that

these ‘strata’ of Y can contain nonimmersive points (but we will see below that

the subset of these ‘strata’ that also belong to Rk do not contain nonimmersive

points, and hence form a genuine stratification). For any l 2 L, let lk denote the

set of branches b 2 BðYÞ passing through l which correspond to the k smallest

minimal 52-tangent spheres with centre in l, which by definition have distinct

support sets (if there are fewer than k minimal spheres with distinct radius then

lk contains all branches through l that correspond to some minimal sphere). We

can now define

Rk :¼ fb 2 BðYÞ : b 2 lk; 8l 2 L : l � clbg [ �Yð3Þ [ �Sð1;1Þ:

Now notice the following: the second of our genericity conditions implies that the

proper A2-stratum is open and dense in E. The curvature sphere at an A2-point

q 2 Xi has, by the definition of an A2-singularity, points in the neighborhood of q

in Xi in its interior (and in its exterior). The set Y at a centre p2Y of an r-tangent

sphere with only A1-points qi, i ¼ 1; . . . ; r, in its support set is easily seen to be

immersive, the tangent planes of the branches of Y at p being given by the hyper-

planes perpendicular to the vectors qi � qj. On the other hand, any r-tangent sphere

S with centre p and some non-A1-point q 2 Xi in its support set contains points of Xi

in its interior: if q is of type A2 this is obvious, and if q is a more degenerate (i.e. of

type A3 or worse) then – by the density of the A2 stratum in Ei – there is an A2-sphere

S0 with centre p0 and a support point q0 2Xi with p and p0 and q and q0 arbitrarily

close, and S has points of Xi in its interior because S0 has (by the continuity of
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the distance-squared function to an algebraic set). It follows that the ‘strata’ of Y

with nonimmersive points have not been selected for the subset Rk of Y.

We now derive a bound for the number of strata of Rk. Given a collection

X1; . . . ;Xn of algebraic sets, there are
Qs

i¼1
n
ri

� �
sets �Yðr1;...;rsÞ, and each of them is

an algebraic set whose defining equations will be studied below. The number of

connected components of the semi-algebraic set Yðr1;...;rsÞ depends on the number

of components of its closure and on the number of connected components of all

the (lower-dimensional) sets

Yða1;...;atÞ �
�Yðr1;...;rsÞnYðr1;...;rsÞ

in its boundary. For large enough s and r1; . . . ; rs, namely for
Ps

i¼1 > dþ s (by the

dimensional genericity condition), the boundary of Yr1;...;rs will be empty, so that

Yr1;...;rs has as many connected components as �Yr1;...;rs . We call a connected

component of such a nonempty set Yðr1;...;rsÞ, whose boundary is empty, a maximal

component, and Yðr1;...;rsÞ a maximal set. The maximal sets are algebraic (and not

merely semi-algebraic) sets, and we can estimate their number of components (in

the worst case, in terms of combinatorial complexity, they will consist of isolated

points). Likewise, the combinatorial complexity of the closures of the sets Sðc1;...;ctÞ

and Sðc1;...;ctÞ \ Yðr1;...;rsÞ is OðntÞ and Oðntþ
P

ri Þ, respectively, and the complexity of

the interiors of these sets will depend on the number of components in their bound-

ary (for
P

ri and
P

cj sufficiently large we get, again, maximal sets with empty

boundary). By inductively deleting the lower-dimensional boundary components

from Y ¼ �Y2, beginning with the maximal components, whose boundary is empty,

we obtain a ‘stratification’ of Y whose ‘strata’ are the connected components of

the sets Yðr1;...;rsÞ, Sðc1;...;ctÞ and their intersections. The number of ‘strata’, as a func-

tion of n, obtained in this way is of the order of the number of maximal sets. Fur-

thermore, by discarding the ‘strata’ in YnRk, we get a genuine stratification of Rk

(as remarked above).

For the 0-dimensional maximal sets Yðr1;...;rsÞ we have, by the genericity of X, the

relation
Ps

i¼1 ri ¼ dþ s. For the 0-dimensional maximal sets Sðc1;...;ctÞ and

Sðc1;...;ctÞ \ Yðr1;...;rsÞ we have in the worst case of hypersurface arrangements (where

all ci ¼ 1) the relations t ¼ d and tþ
P

ri ¼ dþ s. Hence, there are at mostQs
i¼1

n
ri

� �
� OðndþsÞ such maximal sets, and each of them consists of a certain num-

ber, NðD;m; d Þ, of isolated solutions to the defining equations of these algebraic sets

(which will be studied below).

The relation
P

ri ¼ dþ s, where all ri 5 2, implies that s4 d, and for the maximal

sets that belong to Rk we have that s4 minðk; d Þ. Hence, there are at most

Oðnminðdþk;2d ÞNðD;m; d ÞÞmaximal sets, or strata of dimension 0, ofRk. The projection

of the zero-set defined by the equations of a bi-tangent sphere in Section 3.2 of [8]

jið p; xÞ ¼ jjð p; x
0Þ ¼ 0; kx� pk2 ¼ kx0 � pk2

(the jl are maps into d-space and the product of the components of this map has

degree OðDmþ1
Þ) are the sets Si; j, which are algebraic hypersurfaces in Rd of degree
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OðD2ðmþ1Þ
Þ. Combining the defining equations of Si; j with the defining equations of

the algebraic sets Xi we can define the algebraic sets �Yðr1;...;rsÞ,
�Sðc1;...;ctÞ and

Sðc1;...;ctÞ \ Yðr1;...;rsÞ in Rd by equations of maximal degree OðD2ðmþ1Þ
Þ. The number

of connected components of these sets is therefore at most OðD2ðmþ1Þd
Þ (by [6]).

The maximal sets coincide with their closures, hence

NðD;m; d Þ � OðD2ðmþ1Þd
Þ:

The desired bound for jAðRkÞj, and therefore for jAðVkÞj, now follows. &

LEMMA 3.2. The set U [ V [W is closed in X . As a consequence, the singular

stratification of Vk generically satisfies the Whitney conditions ðaÞ and ðbÞ.

Proof. The collections of algebraic sets U containing some singular algebraic set

Xi are clearly closed (simply consider the defining equations of the Xi together with

the conditions of a singular point of Xi).

Next, consider V � X . The set

~Ei :¼ fð p; qÞ 2 Rd

 Xi : fið p; qÞ unstableg

has dimension d� 1 for any non-singular algebraic set Xi. (Note that for any given

q 2 Xi, the distance-squared function fi is singular if p lies in the normal space NqXi,

and the set of p for which fi has a non-Morse critical point q has codimension 1 in

NqXi.) Let ~Ci � ~Ei denote the proper A2-stratum, and set ~Di :¼ ~Ein ~Ci. Using the

defining equations ji ¼ det dji ¼ 0 for ~Ei in Section 3.2 in [8] (notice that these

define ~Ei if we omit the existential quantifier in the definition of Ei), together with

the extra condition for an A3-point (or something more degenerate), which is given

by the vanishing of the second derivative in the kernel direction of dji, we see that the

set ~Di of non-A2 points in ~Ei is closed and of positive codimension, provided that one

avoids a closed set of sets Xi.

Let p: Rd

 Xi ! Rd denote the projection onto the first factor, and denote the

images of the sets ~Ei, ~Ci and ~Di under this projection by Ei, Ci and Di, respectively.

The restriction of p to ~Ci � ~Ei is locally one-to-one, the subset Ci of proper A2-points

in Ei is therefore open and dense and of dimension d� 1 (if one avoids a closed set of

sets Xi).

Finally, consider the set W � X . The sets �Yðr1;...;rsÞ and
�Sðc1;...;ctÞ (and their intersec-

tion) can be viewed as intersections of an appropriate number of hypersurfaces Hr,

which are either inter-set level-bifurcation sets Si; j or zero-sets h
�1
l ð0Þ of the defining

equations of the Xi. Excess intersection occurs when the number of such intersecting

hypersurfaces is greater than the codimension of the intersection locus. Suppose now

that Aj :¼
Tj

r¼1 Hr, codimAj ¼ j, but codimðAj \Hjþ1Þ ¼ j. We will show that there

exists a 1-parameter family of algebraic sets VðtÞ, with Vð0Þ ¼ Xi and

degVð0Þ ¼ degXi, such that the induced family Hjþ1ðtÞ cuts Aj in a set of codimen-

sion greater than j, far all t 2 ð0; EÞ (E some sufficiently small positive constant).

By choosing the intersections of the Hr in the right order, we can ensure that the

Xi, that we wish to deform, does not appear in the definition of Aj. When

92 J. H. RIEGER



Hjþ1 ¼ h�1
l ð0Þ, where hl is a defining equation of Xi, we can simply take as our VðtÞ

(sufficiently small) translates of Hjþ1. When Hjþ1 ¼ Si; j, choose a point p 2 Aj and

global coordinates with p as the origin of Rd, and define the family

VðtÞ :¼ ð1þ tÞ � Xi of scaled copies of Xi ¼ Vð0Þ. It is easy to see that Hjþ1ðtÞ, for

all t 2 ð0; EÞ, cuts Aj in a closed set of codimension greater than j: Aj \Hjþ1ðtÞ is

closed in Aj and p =2Hjþ1ðtÞ for t 6¼ 0, hence Aj \Hjþ1ðtÞ has positive codimension

in Aj.

Hence U [ V [W is closed in X . The Voronoi boundary Vk of a generic collection

of algebraic sets X 2 XnU [ V [W has no nonimmersive points, the singular strati-

fication of Vk therefore trivially satisfies the Whitney conditions ðaÞ and ðbÞ (Note:

the tangent space at a boundary point p of a stratum is simply the well-defined tan-

gent space of the ‘branch’ B of SiðVkÞ containing this stratum as an open subset, and

it contains the tangent space of the lower dimensional stratum containing p and the

limit of any sequence of secant lines through pairs of points in B tending to p.) &

In the plane (i.e. for d ¼ 2) one can easily prove the following sharper bound.

PROPOSITION 3.3. For closed algebraic sets X1; . . . ;Xn in R2
ði.e. algebraic curvesÞ

the complexity of the first-order Voronoi diagram is jAðV1Þj � YððnDÞ2Þ.
Proof. For hypersurfaces we have d ¼ D. Proposition 2.2 yields the desired lower

bound, it is therefore sufficient to show that jAðV1Þj � OððnDÞ2Þ. Compactify

V1 � R2 by joining the unbounded arcs to a vertex p at infinity, and let ei denote the

number of connected i-cells in the arrangement AðV1 [ fpgÞ. We know already that

e2 � YððnDÞ2Þ. There are two types of arcs: closed arcs and arcs bounded by two

vertices – let ec1 and eb1 denote the number of arcs of the former and latter type,

respectively. Clearly, ec1 4 e2 and 3e0 5 2eb1 (because each bounded arc has two

vertices and each vertex has degree at least three). Let cðV1Þ denote the number of

connected components of V1. The components of V1 are boundaries of Voronoi

cells, hence cðV1Þ4 e2. The formula

e0 � ðec1 þ eb1Þ þ e2 ¼ 1þ cðV1Þ

and the inequalities above now imply the desired upper bounds for e0 and

e1 ¼ ec1 þ eb1. &

Remark. For nonintersecting simple algebraic curves of degree Oð1Þ and points in

the plane it is known that jAðV1Þj � YðnÞ, see [1].
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