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Abstract. The view graph of a surfadg in 3-space is a graph embedded in the spacé
centers or directions of projection, whose nodes correspond to maximal connected regions
of V which yield equivalent views ofl. The size of the view graph of a piecewise smooth
algebraic surfac®l with transverse self-intersection curves and isolated triple-points and
cross-caps i® (nk dmv dédmvy \wheren andd denote the number of “component surfaces”

of N and their maximal degree, respectively, and where= 6 in general olK = 3 for

N diffeomorphic to the boundary of a polyhedron. (For surfaces without cross-caps, this
bound has been established in [17].) Also, for the special piecewise linear casegwhére

andK = 3, itis known that the size of the view graph is actuaiyn3@mV).

It is shown that the exact view graphs of such surfaces can be determined in
O(nk@dmV+hy . p(d, L) time by a deterministic algorithm and @(nk 9mvV+e) . p(d, L)
expected time by a randomized algorithm. HEris some polynomial. is the maximal co-
efficient size of the defining polynomials i, ande is an arbitrarily small positive constant.
Note that the randomized algorithm is, in terms of combinatorial complexity (whenelL
are assumed to be constants which do not depemd,arearly optimal—its combinatorial
time complexity exceeds the size of the view graph only lny the exponent.

1. Introduction

The computation and complexity of view (or aspect) graphs of surfaces in 3-space has
been the subject of a fair number of works in the fields of computational geometry and
computer vision. The survey article by Bowyer and Dyer [2] gives a good overview
of the works on polyhedral surfaces up to 1990 from a computer-vision point of view.
Related works in the fields of combinatorics and computational geometry on visibility
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problems and the number of topologically distinct views of “polyhedral terrains” (i.e.,
special polyhedral surfaces given as function graphs) are summarized in the recent book
by Sharir and Agarwal [18] (see also the discussion at the end of this paper). The recent
survey [15] concentrates on view graphs of smooth and piecewise smooth algebraic
surfaces (the latter include both smooth as well as polyhedral surfaces as special cases);
most (algorithmic) works on this subject have appeared after 1990.

In[17] we have studied the complexity of view (or aspect) graphs of piecewise smooth
algebraic surfacdgl having transverse self-intersection curves (“crease curves”) and iso-
lated triple points and of subsef$’ C M representing the boundaries of semialgebraic
solids. In this work we have also presented exact symbolic algorithms for computing the
view graphs oM andM’ and have illustrated the results produced by an implementation
of these algorithms for simple example surfabésindM’ c M.

Much remains to be done in terms of analyzing and improving the running times of
these algorithms. The algorithm in [17] for the surfadéshas a polynomial running
time, but we did not attempt to give a specific bound for the degree of this polynomial
(which would have been far from optimal). For bounding surfddés- M of solids the
worst-case running time of the algorithm in [17] is exponential in the number of unions
appearing in the defining formula of the solid.

Meanwhile there have been two new developments in the fields of computational
geometry and classification of singularities which form the basis for the algorithms
described in the present paper. These algorithms are more efficient and (slightly) more
general than the ones in [17]. First (and relevant for the efficiency aspect) there is the
work by Chazelle et al. [4] and by Sharir and Agarwal [18] in the field of computational
geometry and combinatorics which yields algorithms for stratifying semialgebraic sets
which are much more efficient, in terms of combinatorial complexity, than previous
algorithms. Givem polynomials inD variables, the algorithms in [4] and [18] determine
adecomposition dkP into O(n?P—3+¢) sign-invariant connected cells of “simple shape”
for which point-location queries can be answere@igiog n) time. This decomposition
can be determined by a deterministic algorithnOim?°+1) time and by a randomized
algorithm in O(n?P=3+¢) (for D > 3) or O(n?*%) (for D = 2) expected time (see
Theorems 8.21 and 8.23 in [18] and the introduction in [4]). Second, there is the recent
classification by Carter et al. [3] of sequences of projectidhs> R® — R? — R of
knotted 2-surfaces in 4-space which, as a by-product, yields the codimension 1 views
of singular surfaces in 3-space having not only transverse intersection curves and triple-
points but also cross-caps.

These results, together with the rather detailed a priori knowledge about the topology
of the view bifurcation set from [17], enable us to obtain—in a fairly straightforward
way—exact view graph algorithms for surfaddsandM’ (having additional cross-caps)
which have a near-optimal combinatorial time complexity.

1.1. Singular Surfaces and Bounding Surfaces of Solids

In this paper we are interested in “visibility problems” for the following two classes of
curved surfaces:
(i) Singular algebraic surfaced = [ J'_; M;, whereM and allM; have curves of
transverse self-intersections and isolated triple-points and cross-caps.
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(i) Bounding surfaced!’ of closed semialgebraic solids

U 1y
S:=J[peR®:hyi(p) =0},

u=1li=1

such thatM = |J, lJ; h3{(0) is an algebraic surface with the kind of singular
points described in (i). Note that afW’ is a semialgebraic subset of soiie

Note, of course, that piecewise linear surfaces are special cases of the sifaces
and M’ above. In terms of space and time complexity of the algorithms below it is,
however, convenient to single out a special subclass of the suléides which sharper
complexity bounds can be obtained. Namely, the classdfipounding surface$/’
of semialgebraic solids which can be deformed—by a nonlinear coordinate change in
R3—into the bounding surface of a polyhedron. The surfaces in this subclas®©liawye
self-intersection curvesn being the number of faces, and no cross-caps—on the other
hand, a general surfadd’ has O(m?) self-intersection curves and also has isolated
cross-caps.

Also note that, for zero-sets, one expects inghaeric cas¢hat the component sur-
facesh;” () (resphy il(O)) arenonsingularand intersect transversely along intersection
curves and in isolated triple-points (this is an easy consequence of the Bertini—Sard
theorem). Furthermore, such surfaces—without cross-caps—are typically the ones that
are relevant in geometric and solid modeling. By contrast, surfaces given as images of
generic mappingfrom 2-space into 3-space typically have transverse self-intersection
curves, triple-points as well as cross-caps (this is a classical result of Whitney [21]). This
more general class of surfaces is considered in this paper.

1.2. Combinatorial and Algebraic Complexity

The combinatorial complexitpf the surfaceM is determined by the numbarof com-
ponent surface®l;. The combinatorial complexity of1’ does a priori depend on the
number of uniondJ and the numbers of intersectiots ..., Iy required to define
the solid S. However, the total number := Y"U_, 1, of “basic semialgebraic sets”
{p € R3: hy;(p) > 0} will be, for the purpose of this paper, a sufficiently fine measure
of the combinatorial complexity db and its boundary/’.

Thealgebraic complexityf the surfacedM andM’ is given by the maximal degree
d of the component surfaced; andh, il(O), respectively.

The time complexity of the algorithms described below depends amdd as well
as on the coefficient sizes of the defining polynomialof the surfaces. So we set
L = sup|h;|1. Note that a polynomial-time algorithm {m, d, L) also has a polynomial
running time in thebit-complexitymodel.

Finally, the following two (symbolic) constants will appear in the exponents of the
complexity estimates below. First, the dimension of the “viewing spatehich is
two in the case of parallel and three in the case of central projection. Second, for any
surfaceM or M’ having onlyO(n) self-intersection curves we skt = 3, for general
surfaces (having) (n?) self-intersection curves) we st = 6. Note that, for surfaces
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M’ which are diffeomorphic to the boundaries of polyhedra, we havedhat3 (recall
the discussion in Section 1.1 above).

1.3. Classifications of Views and the Definition of View Graphs

Let N be either one of the surfacktor M’, let S(N) denote the singular set df, and let

V = P? (resp.R3\N) be the “view space” of all directions (resp. centers) of projection.
Giveng € R%andw € V, parallel (resp. central) projection magpso the line througt
parallel tow (resp. to the line joining| andw). Let p,: N — P? denote the restriction
to N of the parallel (resp. central) projection frdR? into the “retinal plane’P? along

the direction (resp. from the centes)e V. Define aviewof N from w as follows:

Vo (N) 1= Pu(S(N)) U pu (20 (N)),

wherex,, denotes the set of critical points of the mpp (in which dp, fails to have
full rank). From “almost all” directions,,(N) is a curve in the retinal plane which is the
union of the projected self-intersection curved\b&ind of the apparent contours of the
“faces” of N.

A pair of views of N is equivalentif one of them is mapped onto the other by a
diffeomorphism of the retinal plane. The actual classifications of viewbl afse a
slightly different equivalence relation: a pair of projections\bfc R? is equivalent if
there exist diffeomorphisms &?3, preservingN, and of the retinal plane mapping one
projection onto the other. It is known that equivalence of projections implies equivalence
of views, but the converse is only true for equivalence classes (of projections and views)
of low codimension. In this paper we merely have to know all possible codimension
< 1 views (the stable and “minimally unstable” views), and for each of them there is
exactly one corresponding type of projection of the same codimension. Views of surfaces
N with transverse self-intersection curves and isolated triple points can have six types
of stableisolated singular points, corresponding to the codimension 0 orbits under the
equivalence relation above, and nineteen typamefablecodimension 1 singularities,
see [17]. For surfaces with additional cross-caps, we get one additional type of stable
singular point (a fold of the cross-cap) and three additional codimension 1 singularities,
see [3].

The view bifurcation set3 ¢ V of the family of all parallel or central projections
of N consists of all directions or centers of projectons V which yield an unstable
view (that is, a view containing at least one singularity of codimensidy). It has been
shown in[17] that the view bifurcation set of any surface with transverse self-intersection
curves and isolated triple points is a subset of view space of measure zero—however,
surfaces with quadruple points have region-filling view bifurcation sets.

Assuming that the view bifurcation sBtC V of a surfaceN has measure zero, we
can define th@iew graph GN) of N as follows:G(N) = (V, E) is a graph embedded
in ¥V whose set of vertice¥ are the connected regions W5 and whose set of edges
E are the branches & of dimension dim — 1 separating adjacent connected regions.
Note that all views obtained from within a single connected regiovi\d$ are related
by a diffeomorphism of the retinal plane. Traversing an edge of the view geaph
corresponds to a “catastrophic change” in the viewof
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1.4. Results and Organization of Paper

Section 2 contains some piecewise smooth algebraic example surfaces and their view
graphs. (The examples have been computed with a slightly modified implementation of
the algorithmsin[17]. The modifications take care of cross-caps and other singularities on
the component surfaces bf. The more substantial modifications described in Section 4
below have not yet been implemented.)

In Section 3 we present a table of necessary and sufficient conditions for a direction
or center of projectiom to lie in the view bifurcation seB (or B’) of M or M’. In other
words, the conditions in this table “recognize” all degenerate viewd ¢br M’). The
conditions are derived from the recent classification of codimension 1 views of such
surfaces in [3].

In Section 4 we study the time complexity of algorithms for determining the exact
view graphsG(-) of piecewise smooth algebraic surfaddsand of bounding surfaces
M’ of semialgebraic solids. We show that b@#iM) and G(M’) can be determined
in O(nK@dmV+ly . p(d, L) time by a deterministic algorithm or i@ (nK dmV+e) .

‘P(d, L) expected time by a randomized algorithm. The combinatorial complexity of the
randomized algorithm is only by an arbitrarily small positive constagreater than the
size of the view grapls(-) which is of orderO(nK dmVdédimVy 't js known that, in the
special case of polyhedra whate= 1 andK = 3, the size of the view graph is actually
®(nd9mV) see [16]. So, from a combinatorial point of view, the randomized algorithm
is nearly optimal.

The overall combinatorial structure of the algorithm fdris the same as in [17],
except that, in one substep, the (by now classical) cylindrical algebraic decomposition
algorithm by Collins is replaced by the semicylindrical decomposition algorithm de-
scribed in [4]. Additional modifications of the algebraic part of the algorithm are also
necessary, due to the presence of singular component surfabes of

For bounding surfacebl’ of semialgebraic solids we describe a new polynomial-
time algorithm—the algorithm foM’ in [17], by contrast, has a running time which is
exponential in the number of uniokksin the defining formula of the solid.

In Section 5 we present bounds for the degree of the view bifurcation set and for the
number of nodes in the view graph of surfaces having cross-caps, as well as curves of
transverse self-intersections and isolated triple-points. The complexity of view graphs
of surfaces without such cross-caps have been studied previously by Rieger [17] and
Petitjean [14]. Using the necessary and sufficient conditions for unstable views presented
in Section 3 we show that the asymptotic complexity of the size of view graphs of surfaces
with cross-caps is the same as that of piecewise smooth surfaces without cross-caps,
namelyo(nK dide6dimV)_

Finally, in Section 6, we discuss some recent works on visibility problems and view
graphs, relate them to the results in the present paper and mention some open problems.

2. A Few Examples

Perhapsitis bestto begin with some examples of piecewise smooth algebraic surfaces and
their view graphs (for parallel projection). For parallel projection, the view bifurcation
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setB C P? of a surfaceN is the dual of the view graplB(N). If (a : b : c) are
homogeneous coordinatesIi, then the computation d&(N) can be carried out in

the affine chart1, b, c) with the understanding that pairs of antipodal regionsr_,

i.e., nodes of5(N), are to be identified, unless their closures contain componfs

B at infinity. In this case the nodes andr_ are either connected by an edgeCifis

a subarc of the line at infinitg = 0, or not if dimC = 0. All three example surfaces
below have certain symmetries which, in turn, induce symmetrigsasfdG(N) in the
plane(b, c). Below, we use the notational convention that regions in the complement
of B, i.e., nodes of5(N), which are related by some reflection in tti® c)-plane are
denoted by the same numbers.

Example 1. The zero-seM of h = x?y? + x?z2 + y?z? — xyzis known as Steiner’s
Roman surface (see Chapter VIl of [10] and Chapter 6, Section 46 of [9]). The siface
has six cross-caps at-3, 0, 0), (0, 3, 0), (0, 0, £3). There are three lines of double-
points (the coordinate axes) connecting pairs of cross-caps and intersecting at the origin
in a triple-point. Strictly speaking, Steiner's Roman surface is the semialgebraic surface
(having the same view graph &%) given by

M\((X*> 3 y=z=01U{y’> L x=2z=01U{z> ;,x=y =0},

i.e., only the intervals+ 3, 1] of the coordinate axes belong to the surface. See Fig. 1
for a picture of Steiner’s surface. The view graplM) of M, shown in Fig. 2, has 88
nodes. For Steiner’s surfageandG (M) are point-symmetric about the origin. Figure 3
shows a view oM associated to node number 36 (for space reasons, we do not show
the views associated with the other node&gM)).

Fig. 1. Steiner's Roman surface.
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Fig. 2. The parallel projection view graph of Steiner's Roman surface: the dashed circle indicates the line at

infinity a = 0 and edges cutting = 0 connect equally numbered antipodal nodes.

Example 2. The boundaryM’ of the union of two solid half-spheres defined by
R2-x+D* -y -2 >0U2-(x-1)?-y*-Z2=0)N{z=0)

has two triple points lying on three circles of double-points (see Fig. 4). The view graph
G(M’) of M" has 26 nodes and is equal to the view graph of the suiWace M’ which
is given by the zero-set of

R-x+1%2-y?—-)2-(x—-1>-y?* - Pz

These view graphs are symmetric under reflections in the tine® andc = 0 and are
shown in Fig. 5. Figure 6 shows the viewsMfandM’ associated to node number 1 in
the view graph.



Fig. 3. Aview of Steiner's Roman surface from node number 36.
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Fig. 4. The union of two solid half-spheres.
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Fig. 5. The parallel projection view graph of the bounding surface of two solid half-spheres: the dashed
circle indicates the line at infinitg = 0 and edges cutting = 0 connect equally numbered antipodal nodes.

Fig. 6. Aview of the bounding surfac®l’ of two solid half-spheres from node number 1: crossed-out curves
belong to view ofM\M’.
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Remark. The above example is somewhat untypical. In general, the deaph) is
smallerthanthe grapB(M), for M’ c M (see Fig. 2 of [17] for a more typical example).

3. Defining Conditions of the View Bifurcation Set

The view bifurcation set of a surface consists of all directions or centers of projection
giving rise to some degenerate view of this surface. The classification of projection-
maps, for singular surfaces with transverse self-intersection curves (“crease curves”)
and isolated triple-points, and cross-caps, yields 7 equivalence classes of isolated stable
singularities (of codimension 0) and 22 minimally unstable singularities of codimension
1. In this classification, two projection-maps are considered to be equivalent if one is
mapped onto the other by a diffeomorphisni®fpreserving the projected surface and

a diffeomorphism of the retinal plane. The “view types” in column 2 of Table 1 refer
to the normal forms of the 22 equivalence classes of codimension 1: the view types
for j = 1 to 19 constitute a complete list of codimension 1 views for surfaces without
cross-caps and can be found in Proposition 4.1 of [17]. The three remaining view types
(j = 20, 21, 22) involve cross-cap$:= 20 corresponds to the second normal form

Table 1. Minimally unstable view types.

Intersection Additional
j = View type (“name”) multiplicity conditions
1 8 (lip/beak) 3D Dieg=0 =
2 7 (swallowtail) 4D —
3 5+5+5 (fold triple-crossing) (21,121, 12 —
4 6+5 (cusp fold crossing) (31, 12D —
5 5++5 (tacnodal fold crossing) (2], [2]) NI =0
6 11, (semilip/beak) (2, 1) Cxl =0 *
7 IV (semicusp) (3, 1) —
8 VIl (crease-cusp) (2, 2] —
9 1+1+1 (crease triple-crossing) ([1, 1], [1, 1], [1, 1]) —
10 1++1 (tacnodal crease crossing) (1, 1], [2, 1] n'c‘ =0
11 6+1 (cusp crease crossing) (31,1, 1) —
12 5++1 (tacnodal fold crease crossing) (21,12, 1D n)!c =0
13 5+5+1 (fold fold crease crossing) (21,121, 1, 1) —
14 5+1+1 (fold crease crease crossing)  ([2], [1, 1], [1, 1]) —
15 5+l11 (fold semifold crossing) (21,12, 1D —
16 11I+1 (semifold crease crossing) (2,1],[2, 1] —
17 S(5+Y) (fold vertex crossing) (21,[2,1,1) —
18 S(1+Y) (crease vertex crossing) (1,11,[2,1,1) —
19 S(Ysz) (semifold-vertex) (2,1, 1) —
20 Ws11 (cross-cap-cusp) (3D W=0
21 W+5 (cross-cap fold crossing) (21,121 W=0
22 W+1 (cross-cap crease crossing) (21,11, 1D W=0
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in Theorem 8.6.1 in the thesis of West [20], and the normal formg fer 21 and 22

are given in Section 4.1(ii) of [3]. We do not list these normal forms here (they are not
very enlightening and require some extra notation for multigerms of maps) and refer the
reader to the original classifications, but in Section 3.1 we discuss the geometry of the
additional view types involving cross-caps.

The unstable views can be “recognized” by certain conditions that involve the inter-
section type of a ray of projection with a surface at a set of points and, in some cases,
the “local geometry” of the surface at these intersection points. More precisely, a view
contains one of the 22 codimension 1 singularities (or some codimensi®singularity
in their closure) if and only if at least one pair of conditions in columns 3 and 4 of Table 1
is satisfied.

The notation for the intersection multiplicities in column 3is as follows.jset . ., px
be a set of points and let denote the number of surface branchep;aConsider a ray
of projectionl (t) = p+t-L,whereL = o (forV =P?) orL = w— p (forV = R3\M).

The intersection multiplicities of the rdyt) with each surface branch atkatuple of
points are then denoted by

((LEE P 7% PR L[ RR [7 )2

Strictly speaking, we should replace all intersection multiplicitigsin column 3 by

> iap (equality holds for the codimension 1 views, greater intersection multiplicities
yield codimensior> 2 views). The equations in column 4 vanish if certain geometric
conditions hold (for example, the point is a parabolic point or a cross-cap of the surface)
and will be explained later.

We now have the followingw € V belongs toB (resp.B’) if, for somek-tuple of
points inM (resp.M’), at least one of the 22 pairs of conditions in columns 3 and 4 of
Table 1 are satisfied.

The conditions in Table 1 are described in more detail in the remainder of this section.
The major differences between the conditions for unions of component surfaces with
self-intersection curves, triple-points, and cross-caps and the corresponding conditions
in [17] for unions of regular component surfaces are as follows:

e The cross-caps give rise to additional view singularities that are described in Sec-
tion 3.1.

e Atthe singular points oM one has to consider thetersection multiplicityof a ray
of projection and the varietyl := | J hi‘l(O) rather than the contact order—at non-
singular points both concepts coincide. Furthermore, there are now, for example,
three types of triple-points oM: the three “local surface branches” can glob-
ally lie on one, two, or three different component surfaces. The conditions for the
intersection multiplicities are slightly different in the three cases, see Section 3.2.

e The“geometric conditions” in[17] (which are briefly summarized in the Appendix)
have to be modified substantially in some cases, otherwise they would vanish iden-
tically on the singular sets of the component surfaced of\lso, some “geometric
conditions” fail to define complete intersections—this is in contrast to the “generic
case” of unions of regular component surfaces studied in [17]. The necessary mod-
ifications of the “geometric conditions” are described in Section 3.3.

o Finally, certain types of codimension 1 views are detected by several of the 22
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conditions in Table 1, see Section 3.4 below. This is also essentially due to the fact
that we now allow nongeneric zero-séts

To save indices, we writ¥ := [ J; h-*(0) in the present section, rather thih:=

3.1. The Additional View Types Involving Cross-Caps
The surface parametrized by the map
X: R? > R3, (U, v) ~ (U, uv, v?)
has a cross-cap at the origin, and the imXg&?) is given by the semialgebraic set
(y?—x?z=0)\{x=y =0,z <0}.

Take a lind (t) := (at, bt, ct), (a: b : t) € P?, through the origin and compose it with
the implicit defining equatioh := y?> — x?z of the cross-cap:

hol(t) = b%t? — a’cts.

We see that the intersection multiplicity of the line and the cross-cap ist?-#00, 3 for

b = 0 andac # 0, and infinite for the special lines= b = 0 anda = ¢ = 0. The lines
of intersection multiplicity> 3, corresponding td = 0, are contained in the tangent
cone of the cross-cap, which is given by the lowest order homogeneous térmenf
by y? = 0.

The projections of the cross-cap along some ray not contained in the tangent cone
yield folds of the cross-cap, which are locally stable (there is an open set of such rays
given byb # 0). For “most” rays in the tangent cone (the ones for whick 0 but
ac # 0) we obtain cusp views of the cross-cap (of type:\y, see entryj = 20 in
Table 1 and Fig. 7. The last two entries in Table 1 are bilocal view singularities: in type
W+5 a fold of a cross-cap and an ordinary fold line are superimposed, and in type W+1
a fold of a cross-cap and a projected crease line are superimposed, see Fig. 8.

N \/ 1%

N A T

Fig. 7. A cusp view of the cross-cap (center) and nearby stable views (left and right).
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Fig. 8. A (fold or crease) line passing through a fold view of the cross-cap (center) and nearby stable views
(left and right).

3.2. Singular Component Surfacdatersection Multiplicities

The intersection multiplicity of(t) and asinglecomponent surfachl; = hi‘l(O) at pm
is given by the order of the functiok (t) := h;j o I(t) att, = |~2(pm). ForK to have
ordera atty, it is necessary that! K (t)/dtl, 0 < j <a — 1, vanish at = tp,

For surfacesvl, whose component surfack§ are singular, there are, for example,
several distinct possibilities for interpreting the intersection multiplicityl, c] at a
triple point py,, of M. Note thatp,, can (globally) lie on

() three distinct component surfackt, M,, M3 of M whose intersection multi-
plicities with|(t) area, b, andc, respectively;
(ii) on a pair of component surfacés;, M,, one of them having a self-intersection
S(M,) at pm, and intersection multiplicitiea + b andc (ora+c,bora, b+c);
or
(i) on a single component surfadel;, having a triple pointT (M,) at p,, and
intersection multiplicitya + b + c.

In cases (ii) and (iii) we sometimes writa {- b, c] and [a+ b+ c], rather than4, b, c],
for the required intersection multiplicity gtr,; and in case (ii) we also require that
pm € S(M;) and in case (iii) thapy, € T (M) (the conditions for a self-intersection
and a triple point of a component surface are described below).

3.3. Singular Component Surfacgseometric Conditions

We begin with the conditions for the singular pointshéf Let S(M) denote the closure
of the self-intersections d¥1, and letT (M) andW (M) denote the sets of triple-points
and of cross-caps (Whitney umbrellas). The conditions for a ppitd lie in one of
these sets are as follows—recall thdt = hi‘l(O) and note that the conditions on the
right-hand side must hold for some<d i < n or for somek-tuple of distinct indices
l1<im=n(l=z=mcz<k):

e pe S(M) & (i) pe M, N M, or (i) pe S(M);
e peT(M) < (i) pe My, N M, N M;, or (ii) p e S(M;,) N M;, or (i) p e T(M;);
e peW(M) & pe WM.
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Furthermore, the conditions fqrto lie in the self-intersection locus or in the triple-
point or cross-cap set of a single component-surfdcare as follows:

e pe S(Mj) < hi(p) =dhi(p) =0;
e peT(M) & pe S(M) and rankd?h;), = 0;
e peW(Mj) & pe S(M) and rankd?h), = 1.

The triple-points ofM; are therefore given by the vanishingtgf of the components of
dh;, and of the entries of the Hessidfh;. The conditions for the cross-caps are slightly
more complicated: if the entries of the Hessian are simply replaced by the 2 by 2 minors,
then the resulting conditions detect cross-caps as well as triple-points. The vanishing
ideal of the cross-caps is the union(bf, dh;) and the ideal quotierit : J, wherel is
generated by the 2 by 2 minors addy the entries ofl’h;. The system of generators
of this vanishing ideal is denoted by in Table 1.

Next, we consider the remaining “geometric” conditions in column 4 of Table 1. For
j = 1,5,6,10,12 and regular component surfadds, these conditions are given in
each case by the vanishing of a single polynomial equation supplementing the conditions
for the intersection multiplicities in column 3 (see the Appendix and Section 3.2 of [17]
for explicit expressions). For singular component surfaces, certain modifications of these
conditions are necessary which, exceptjfee 1 and 6, are very minor.

The modifications fof = 1 and 6 are as follows. The conditi = 0 for a parabolic
point of a regular zero-sé¥l; = h(l(O) (see the Appendix) vanishes not only on the
parabolic seP(M;) but also on the singular s&M;) of a singular component surface
M;. What makes matters worse, the (unwanted) compo&@vit) creates solutions of
the recognition equations having higher dimension than the view bifurcation set that we
want to compute. We therefore replace the conditigns D; = 0 by a set of generators,
denoted byDyeg, Of the following ideal quotient:

I(Dreg) = (hl’ DI) : ‘Jhp

where Jp, denotes the Jacobian ideal lnf (which is generated by the components of
dhi). Note thatl, := (hi) + Jy, is the ideal of functions vanishing o&(M;) and
that such functions also belong to the idéal:= (h;, D;). The quotientl; : I, is
contained in the vanishing ideal of the closure of the(8&tM;) U S(M;))\S(M;) (and,
for 11 = /11, is equal to it) and is equal tb(Dreg) (the latter equality follows from
l1: 1= ﬂfelz I, : (f)andl; : (hj) = K[ p], wherek denotes the ground field).

For | = 6 there are two cases: the double-curve (i) is the intersection of distinct
component surfaces and (i) is the self-intersection of a single component surface. In
case (i) we use the condition given in the Appendix, in the latter case (ii) we replace the
expression for the tangent lines of the double-curvelipfvhich vanishes identically
on S(M;), by the following. Observe thal’h; has corank 1 along(M;) except at
isolated points: at cross-caps and triple-point§ptthe corank is 2 and 3, respectively.
Let« be a vector along the kernel direction of the gradient mlap R — R2 and set
m = («, d?h;(L)). In the absence of cross-caps and triple-pointsSav; ), m could
be taken as the new condition f@X!, but any such singular point would create an
(unwanted) excess component in the bifurcation set. Hence, in general, we again have
to compute the generators of an ideal quotiant 1,, wherel; is the ideal generated
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by m, h;, Iy, andd?h; (L, L) and wherd is generated by the vanishing of the 2 by 2
minors ofd?h;.

3.4. Singular Component Surfacedierarchy of Dependencies between
Defining Conditions

For surfacesM which are unions of nonsingular zero-s#ts (the “generic case”) each
condition in Table 1 will “recognize” exactly one type of codimension 1 viewkfin
this sense the conditions are “independent.” For singular component sulfadbss
is no longer true. In this case there exist strictly antisymmetric dependency relations
between certain pairs of conditions and B, denoted byA — B. That is, A holds
automatically ifB does, but not vice versa. In princip&,could be modified to recover
independence frond: if | (A) andl (B) are the ideals defined by the conditions/of
and B, then we had to replac® by the generators of the ideb{B) : | (A). However,
the (costly) computation of these generators can be avoided, knowing the dependencies
is sufficient.

In describing the dependencies we denote each condition by its nynib&able 1
and a subscript indicating its intersection multiplicity. Recall tkdbcal conditions
involve k-tuples of intersection multiplicitieg[i1], ..., [ik]), where [;] = [a, b] or
[a, b, c] at a double- or triple-point of1. We now have to distinguish multiple points of
M which arise from the same or from distinct component surfaces: for exarapte d],
[a+ b, c], and [a 4+ b+ c] denote the intersection multiplicities at triple-pointshdfcut
out by 3, 2, and 1 component surface.

Using this notation, the hierarchy of dependencies amongst the defining conditions
is given by the following sequences:

24y < Tez+p < 19p+1t1)
N v
8(12+2)

32212y < 132+ < Y n+gn+ < )iy n+1)-

4eanen < gEp+ < Beigpry < 18pyira i+

5y < Mt

S21i2n < 12021142 < 10qa+11, 12412,
and
212112 < 222, [2+1)-

All the codimensiore 1 views recognized by the conditions of some given sequence
are simultaneously recognized by the corresponding “terminating condition” on the left.
Each sequence could therefore be represented by its terminating condition. In practice,
however, it is often better first to determine the components of the bifurcation set defined
by the rightmost conditions in a sequence and then work from right to left. In this way, we
can factor out the components already recognized by other conditions in the sequence.
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4. The Time Complexity of Computing View Graphs

Applying the recognition conditions in Table 1 to algebraic surfédgselds the defining
equations of algebraic sefs, ¢ V x R+2, wherek; = 1, 2, or 3 for local, bilocal, or
trilocal singularities of the projection (there are nat-local codimension 1 views, and
the views of higher codimension are all “recognized” by the conditions in Table 1). The
firstindexj of Bj,r ranges over the 22 view types and the second indmumerates the
possible tuples of component surfaddsinvolved in a view of typej. We can think of
the unions of these algebraic sets as being embeddad inR5, note thafR*i+2 has at
most dimension 5. The restriction of the projection) x R5 — ) to B yields the view
bifurcation sef3 of M, which is a closed semialgebraic subsevoT he view bifurcation
set5’ of M’ ¢ M is a semialgebraic subset Bi—the “branches” o3\ B’ consist of
centers or directions of projectian € V which yield unstable views of “pieces” dfl
which do not belong to the boundaky’. On the other hand3 is a subset of the closed
real algebraic seB which is the projection of the complexification Bfinto V. This
set-up is summarized in the following diagram:

B Cc VxR

&

Bc B c Bcvy

The following properties of the view bifurcation sdfsand 5’ of surfacesM and
M’ are essential in the algorithms described below. For surfaces with transverse self-
intersection curves and isolated triple points, these properties have been established in
[17]. Looking at the proofs in [17] we see that these properties still hold for surfaces with
additional cross-caps. L& (resp.P29) denote the class of infinitely differentiable
(resp. algebraic) surfaces with transverse self-intersection curves and isolated triple-
points and cross-caps (where, of couB&9 ¢ P>°), then we have the following:

1. B (and hencé’) has positive codimension i for anyM € P> (see Proposition
2.1 of [17]).

2. B andB’ have no “free boundaries” iti of codimension 2 for anj, M’ € P29,

In particular, the boundary of any “componet’; (or B]{r) of B (or B') always
lies in some other componet - (or B;, /) (see Propositions 2.3, 5.2, and 5.3
of [17]).

3. There areD(nX), K = 6 or 3, components; ;. However, for anyM € P9 the
boundary of3; ; will lie in O(1) other components which are known a priori (see
case (i), Section 5(d)(i) of [17]).

4. Likewise, there ar@®(nX), K = 6 or 3, componentsﬁjyr. However, for any
M’ e P9, the boundary of3;, will lie in O(n) other components which are
known a priori (see case (ii), Section 5(d)(i) of [17]).

Property 1 ensures that the view graptMb{and hence of’) always exists. Property
2 implies that we can “recover” the semialgebraic dB’ from the algebraic sef
(recall the diagram above) by computing certain cell-decompositiovis-by contrast,
for general semialgebraic séfsarising as projections of some algebraicSet V x R®
one has to compute cell-decompositions of the total spaeeR®. Finally, properties 3
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(and 4) yield relatively coarse “stratifications” Bf(andB)—consisting ofo(nk) (or
of O(nK+dMVy) ‘as opposed t® (nK 9MV) “pbranches”—from whichB (andB’) can be
constructed by deleting those branches that liBNiB (or in B\B'). Note that there are
o(nk) componentﬁJ r andB, r: cutting eacHS‘, r With at mostO(1) other components
yields O(nX) branches of3. On the other hand, cutting a componéht C V with at
mostO(n) other components yield3(n“™V) branches oB; r and hence a total number
of O(nK+9MV) pranches of3. Note that the estimate @ (n9™Y) for the number of
branches of3j; is very conservative: a bound of Milnor [12] says that the sum of the
Betti numbers of the union dd(n) components i©(n%™Y), but we are only interested
in the number of branches on a single component.

We can now give a rough outline of our algorithm, which consists of a preprocessing
step and three (resp. four) main stepsNbfresp.M’). Compared with the algorithm in
[17], the modified step 2 now has the highest combinatorial complexity and the new step
4 has a polynomial running time (by contrast, step 4 in [17] has an exponential running
time). The exposition below concentrates on the combinatorial aspects of the algorithm,
the algebraic parts are the same as in our earlier algorithm and have been described in
[17] (note, in particular, that for a fixed numbeiof input surfacesvl = Ui”:l M; the
running time of both the old and the new algorithm is polynomial in the maximal degree
and bit-length of the defining polynomials of the surfaces).

First, we need the following notation. wﬂzl ﬂi'“zl{p e R3: hyi(p) > 0} is the
defining formula of the solid with boundaiM’, then we set

H:={hy1,...,hy,} € Q[p].

Recall that a connected sub¥eobf R? is said to beH -invariant if all polynomials inH
are sign-invariant ol (i.e., are either strictly positive, negative, or vanish).

We first apply the semicylindrical stratification algorithm of Chazelle et al. [4] to
the set of defining polynomialsl c Q[ p] of the input solid, in order to prune away
the setsl?’j,r that correspond to (empty!) components of the bifurcation set arising from
surface-tuples that do notintersect (oR@r The time required for this preprocessing step
is O(n’) (using the deterministic algorithm in [4]) @®(n***) (using the randomized
algorithm in [4]). This completes the “preprocessing” for the view graph algorithm for
the zero-setd/.

For the bounding surfacéd’ ¢ M we also prune away tho&,r that correspond to
surfaces, surface-pairs, and -triples that belond Yd1’. Such surface-tuples correspond
to empty components; . of the view bifurcation set oM. This extra pruning can be
done within the same asymptotic time, and the criteria for being part of the boundary
M’ are the same as in step 4 of the algorithm below. This leaves

K~0om®+n°D+nD?+D%+nT+DT)

componentsé‘,-,r to be considered further, where= " I, and whereD and T are
the numbers of surface-pairs and -triples that intersect®vpassing the first pruning
stage) or lie in the boundaryl’ of the solid (second pruning). For surfaces of general
type,D ~ O(n?) andT ~ O(n) so thatKk = 6. For surfaces diffeomorphic to a
polyhedral surface havin@(n) edges and vertices, we halke= 3.
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The view graph algorithms favl (for M’) in the present work, and the ones in [17],
then consist of the following very high-level steps 1-3 (1-4):

1. Compute, for the remainiri@j,r, the (radicals of the) elimination ideal$l§’j,r) N
Qlw], for1 < j < 22 and 1<r < c(j) ~ O(nX). Result: the defining
polynomials of real algebraic seff, .

2. Determine the connected component¥oB, where = |, , B;,.

3. Decomposé’S’ into O(nK) branches and remove the branches that Iié\'lﬁ?.
Result: the view grapls(M).

4. Decomposés into O(nX+9mV) pranches and remove the branches that lie in
B\B'. Result: the view graps(M’).

Remark. The “branches” in steps 3 and 4 are, in general, smaller than the components
Bjr andB; , of BandB’, respectively. We have already pruned away those components
of B andB/ correspondlng to surface-tuples that don’t intersect over the reals or do not lie
in the boundanpM’. Steps 3 and 4 remove certain branches of the remaining components
of BandB'.

We now consider some of these steps in more detail in order to determine their time
complexity.

The eliminationstep 1uses standard tools from computational algebra and clearly
requiresO(nk)-P(d, L) time (note that the defining polynomialsf, have a constant
number of variables and their degree and coefficient siagds andO(L ), respectively).

Step 2is based on a sign-invariant decompositionVofvith respect to the defining
polynomials of theD (n¥) algebraic setﬁj,r. In[17] step 2 is based on one (fBr= P?)
or several (fory = R3) cylindrical algebraic decompositions &?. Replacing the
cylindrical algebraic decomposition (which is the computational bottleneck in step 2)
by a semicylindrical decomposition (as defined by Chazelle et al. [4]R%0br R3
still allows us to determine the regions Uf\é in the same way as in [17]. Using the
deterministic algorithm described in [4], step 2 requigg®K @4mV+Dy.p(d, L) time,
and with the randomized algorithm from [4] the expected running time of step 2 becomes
O(nK dimV+£) P(d L)

In step 3we pick one sample poirt’ € Sin each of thai)(n ) branches of3. For
o € B, r we check whether the specialization of the |de(aB, r)tow = ' has a positive
number of real roots, if not we remo& Step 3 can be carried out @(nX) - P(d, L)
time.

Remark. The sample points’ in steps 3 and 4 can be chosen such that the specializa-
tion of | (Bj’r) to w = o’ has isolated roots, see [17]. The definitions of the “branches”
(with the appropriate extensions for the additional view types 20, 21, 22) and the
determination of “good” sample points in steps 3 and 4 are the same as in our earlier
algorithm, and we refer the reader to Section 5(d)(ii) of [17] for the (algebraic) details.

Likewise, instep 4we pick one sample point’ € Sin each of theQ(nX+dmV)
branches oB. Below, we describe a new polynomial-time decision procedure for check-
ing whethew’ belongs td3’; if not, we remove the branch (Note that the “old” decision
procedure described in [17] has to count the number of real roots of nf§4to? sys-
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tems of polynomial equations and inequalities.) The new procedure for removing from
B those brancheS that do not belong t#’ is as follows:

begin {Step 4
DecomposeR?® into H-invariant cellsC and label the cellC ¢ M’ as
boundary-cells;
for each brancls c B do
Pick some algebraic representativec S;

b := FALSE
for each root(p™; AT, ..., Akmj_l), 1<m<p,“over’ o do
Determine the real algebraic number coordinates okithiaple
of pointsp™, (A, ..., I(k’k?_l);
Determine the cell€,, ..., Cy containing the points above;
if all these cells are boundary-ceflen b := TRUE
od
if b = FALSEthen deleteS
od
end

Using the deterministic (resp. randomized) semicylindrical stratification algorithm
of Chazelle et al. [4] yield©(n3+¢) - P(d) H-invariant cells inO(n’) - P(d, L) time
(resp.O(n®+%) . P(d, L) expected time). (Recall that this stratification is already known
from the preprocessing step.) For eddhinvariant cellC of dimension< 2 we pick
a sample poinp (with algebraic number coordinates) and check whefher M’, as
follows. Lethy, ..., h; € H denote the polynomials vanishing on the @land define
Hy:={hy1,....hy,} CH,1<u<U.AlsosetH := {hy, ..., h},

H* == |J (H\H,nH)
HuNH #£0

and denote thél, whose intersection withl is empty byH; . We labelC as a boundary-
cellif (i) for all h € HT the algebraic numbé(p) has positive sign and (ii) for ead”
there exists at least oé € H; for whichh'(p) has negative sign. Checking wheti@r
belongs to the boundamyl’ therefore require®(n) - P(d, L) time for each cell (recall
that|H| = n and note that the signs of these algebraic numbers can be determined in
polynomial time). The first line of the above procedure therefore req@irad)-P(d, L)
deterministic orO(n*¢) - P(d, L) expected time.

Next, note that the outer loop will be executed at m@gh<+4mV) . P(d) times and
the inner loopP(d) times. Recall that the pointgi;) are either given byp + A - o’
(for V = P?) or otherwise byp + A; - (o’ — p), wherex; and the coordinates gf and
o' are algebraic numbers. We can compute the minimal polynomials of the coordinates
of thel (4;) from the minimal polynomials of these algebraic number®{d, L) time
(using the usual algorithms for adding and multiplying algebraic numbers encoded by
their minimal polynomials, see, e.g., the article by Loos [11] or Chapter 8.5 of the book
by Mishra [13]). Finally note that, again using the algorithms in [4], we can determine
the H-invariant cell containing some given poiptor [ (%;) in O(logn) - P(d, L) time
(note that the algebraic number coordinates of these points amtH-threariant cells are
defined by polynomials of sizB(d, L)).
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Summing up, we see that the above procedure for removing the brandhiésatfdo
not belong td3’ requiresO (nX+4MY g n4n’) time using the deterministic algorithm in
[4] for computing arH -invariant stratification of 3-space @(n**+9mV |ogn) expected
time using the randomized version.

Looking at the above bounds for the running times of the three (resp. four) steps of the
view graph algorithm foM (resp.M’) we see that, from a combinatorial point of view,
step 2 dominates the asymptotic time complexity. The bounds for the running times of
the deterministic and randomized view graph algorithms stated in the introduction now
follow.

5. The Size of View Graphs

It is shown below that the upper bound in [17]@{nX 9mVd8édmVy for the number of
nodes inthe view graph of a piecewise smooth surface, which is the umermokingular
surfaces of degreg d intersecting in double-curves and triple-points, remains valid for
the surface$/ (and hencéV’) studied in this paper. The double-curves and triple-points
of the surfaces studied in [17] are cut-out by pairs and triples of regular component
surfaces. On the other hand, the surfalgkare unions of singular component surfaces
with double-curves, triple-points, and cross-caps.

Note that this estimate for the number of nod¢é$ in the view graphG = (V, E)
yields an upper bound for the size @f because¢E| ~ O(|V|). This special property
of view graphs—which is in contrast to complete graphs ha@itV |°) edges—boils
down to the fact that the edgeskhare top-dimensional branches of the bifurcation set
B and there are at mo§(nk @mvVdédmVy — O(|V|) such branches.

One checks that the degrees of the view bifurcation 8et6M and of the surfaces
studied in [17] are of the same order, nam@gn¥ d®), which yields the desired bound.
First, one observes that the presence of double-curves and triple-points on singular
component surfaces d¥fl does not change the degree bounds stated in [17] for the
componentd3j, 1 < j < 19, of the view bifurcation set. (Essentially this follows from
the fact that the degrees of the double-curve and of the triple-point set of a component
surface ofM are of orded? andd?, despite the fact that many equations are required to
define these sets.)

The result then follows from the following degree bounds for the additional compo-
nentsl5,0 to By, of the view bifurcation set of surfaces with cross-caps.

Proposition5.1. Let M = U{‘:l M;, d = sup degM;, be a piecewise smooth alge-
braic surface with transverse double-curves and isolated cross-caps and triple-points
Then the degree orders of the componddys 521, and B,, of the view bifurcation set

are ncP, n?d®, and n*d®, respectively

Proof. The components of the bifurcation set are uniBns= Ufgi B; » whose com-
binatorial complexity is given by

n :
i) = ) ~ommd ,
c) (mm) ()
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wherem(j) is the maximal number of distinct component surfageénvolved in a view

singularity of typej. Clearly,m(j) < 1, 2 and 3 forj = 20, 21, and 22, respectively.
The remaining task, then, is to estimate the degree (as a functidhaifa single

subset3;; (j = 20, 21, 22). In doing this, the following lemma will be useful

Lemma5.2. Let T(M;) and W(M;) denote the sets of triple-points and cross-caps
(Whitney umbrellgsof a degree d surface Mvith transverse double-curves and isolated
triple-points and cross-capsThen the following(asymptotically tight upper bound
holds

IT (M) + [W(M)| ~ ©(d3).

Proof. Consider the following stratification dfl;: take as zero-dimensional strata the
triple-points and cross-caps, as one-dimensional strata the arcs of double-curves in the
complement of the zero-strata and as two-dimensional strata the fabg<at out by

the closure of the double-point arcs. Denote the numbeérdifnensional strata bg .

It is convenient to distinguish bounded arcs, which contain at least one triple-point or
cross-cap, from unbounded ones—denote the number of bounded and unbounded arcs
by €0 andey, repectively.

Now e‘l’ < 6ep, where equality holds in the worst case where each bounded arc has
infinite length and terminates in a triple-point. For the unbounded arcs we note that each
contains four faces with, in turn, either one or two unbounded arcs in their closure (note,
any face with> 3 arcs in its closure must be cut out by bounded arcs), hehsee,/2.
Therefore:

e=¢€ +e ~ O+ e).
On the other hand, we have that

&—e+e&=x(M)=> (-Dib(M) < > bj(M),
j j

and the sum of the Betti numbesis, by a result of Milnor [12], at mogD(d®). Hence,
in particular,

& = [T(M)|+ W(M)| ~ Od).

Finally, the zero-set o]f]f’:l ]’[ﬁzl(x,- —k) in R® has degree®andd? triple-points. This
example shows that the degree of our bound is exact. O

Proof of Proposition(Conclusio. Letl(t) = p+t - L, whereL = o (for V = P?)
orL = w — p (for YV = R3\ M), be a ray through a cross-cgpe M; = h(l(O). The
intersection multiplicity ol andM; at p is given by the order ofi; oI (t) att = 0. One
checks that, at a cross-capthis order is at least two.

So, forw to lie in Bag;, p has to be a cross-cap bf; andl an asymptotic line. The
latter means thdh; o | (t) has order> 3 att = 0 which—at a cross-cap where the
order is automatically 2—corresponds to the single condition

d2(h; oI (1))

= d*hi[p(L, L) =0.
TG P
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Hence

Boi= |J weV:d®hpL,L)=0}
peW(Mi)

is the union of W(M;)| ~ O(d®) quadrics inV, which implies that de@»; ~ O(d®).

Forw to lie in By, there must exist—not necessarily distinct—surfabks M; e
{My, ..., My} such thatp € M; is a cross-cap and the r&ft) = p+t - L has at least
2-point contact withM; atl (1), A # 0. This boils down to the following (where{e)
denotes the closure):

Bar= |J cMoeV:ar#0:hj(p+i-L)=dhjlp.(L) =0}
peW(M;)

The degrees dfi, dhj(L) € k[}; w] are O(d)—hence the unio,,, of theseO(d?)
algebraic sets has degree at mogtl®).
A similar argument shows that the set

Bor= |J cMloeV:ar#0:hj(p+ir-L)=hd(p+i-L)=0},
peW(M;i)

corresponding to bilocal projections in which a cross-cap and a self-intersection curve
appear superimposed, has degree at rOgdP). O

6. Additional Remarks and Open Problems

For the special case ajpaque view®f “polyhedral terrains”—that is, for graphs of
piecewise linear functions in two variables havib¢n) edges, vertices, and faces—there

is a bound for the number of nodes in the view graph, nar@ly? 9mY-1+¢) ‘which is

by about a factor ofi sharper than the one for general polyhedra (see Theorems 8.31 and
8.33 of Sharir and Agarwal [18] and their paper [1]). Note that the size of the view graph
for opaque views is less than or equal to the size of the view graph for transparent views
(actually, the former can be obtained from the latter by contracting certain edges). De
Berg et al. [5] have obtained a lower bounddfn® 4™V -1 (n)) (« being the functional
inverse of Ackermann’s function) for the number of distinct opaque views of polyhedral
terrains, which means that the above upper bound is almost tight (actually, for parallel

projection there is a slightly sharper upper boun@o}hf’ZCM) due to de Berg et al.

[5] and Halperin and Sharir [8]). Replacing the piecewise linear functions by piecewise
algebraic ones—but maintaining the restriction that the surfaces are function graphs
with O(n) edges, vertices, and faces—the combinatorial results in [18] can be combined
with our algebraic estimates to obtain @(n3dmV-1+eg6dmVy hoynd for the nodes

in the view graphs of opaque views of such surfaces. In principal, the view graph of
opaque views of “polyhedral terrains,” and more generally of semialgebraic function
graphs, could be computed by supplementing our algorithm by a postprocessing step
which merges those nodes in the view graph which correspond to distinct transparent but
not to distinct opaque views. The resulting algorithm would have the same asymptotic
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complexity as the algorithm described in this paper and hence would not be optimal
for function graphs (terrains), its time complexity would be by about a factar of
too high.

Petitjean [14] has obtained exact formulas, as opposed to asymptotic bounds, for the
degrees of the complexified view bifurcation sets of algebraic surfaces with double-
curves and triple-points using techniques from enumerative geometry. These techniques
also apply to surfaces with additional cross-caps. The transition from the complex to
the real case is, however, very difficult: there exist no nontrivial lower bounds for the
number of connected regions in the complemerif af terms ofd.

For the case of parallel projections of polyhedra, Gigus et al. [7] have presented an
algorithm that determines the view graph= (V, E), as well as an explicit description
of a view for each node, i@ (|V | log|V| +n*logn) time. The design of such an “output
sensitive” algorithm, whose running time depends on the actual|¥izef the view
graph, for curved (piecewise smooth) algebraic surfaces is highly desirable but seems
to be a formidable task. Note that, for (piecewise smooth) algebraic suffhoésigh
degredal but small actual size g¥ |, the real bifurcation sd# of M cuts out only a small
number of regions, but the complexification®fs nevertheless an algebraic variety of
very high degree (namel@(nXd°®)). It just happens that the high-degree polynomials
at the very end of the view graph computation have relatively sl roots—but the
polynomials up to that point could have lots of real roots. Obtaining an output-sensitive
algorithm in such a situation would be of general interest in computational mathematics
and would be a major breakthrough in computational real algebraic geometry.

For polyhedra some recent works have considered the computation of finite-resolution
view graphs (see [19]), which take into account that details of a view that are smaller
than some size-threshold cannot be detected by cameras of limited spatial resolution.
An extension of this work to curved semialgebraic surfaces seems possible but not
very enlightening. Contrary to the claim by some authors (see the paper [6] based on a
panel discussion on aspect graphs in computer vision) that there exist no mathematical
techniques for computing finite-resolution view graphs of curved surfaces, one should
note that the finite-resolution partition of view space of (piecewise smooth) algebraic
surfaces can be defined by Tarski sentences and hence can be effectively computed.
(Recall that Tarski sentences are Boolean formulas with quantifiers and with polynomial
(in-)equalities as predicates.) However, the boundaries of the regions of this partition are
no longer view bifurcation sets (with well-understood topological properties) but rather
unrestricted semialgebraic sets. The exact computation of this finite-resolution partition
might therefore be prohibitive, perhaps one has to be satisfied with approximations.

Appendix. The Geometric Conditions in [17]
Below, M; = h(l(O) is a regular surface aridt) = p+t - L is a ray of projection,
whereL = w (for parallel projection) ot = w — p (for central projection):

(i) M; has zero Gaussian curvaturepeif and only if

e e d?hil,  dhilp) _
D.(p)._det((dhi'p)t 0 =0.
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(i) A pair of surface normalslhy|p—i(0), dhzit), t # 0, in L is parallel if and only
if

N'(p,t, ) := (dhy|p A L, dhpli)) = O.

(iii) The tangent lines of the crease curvg N M, and of the critical set oM; are
parallel atp if and only if

Cx!(p, w) := (dhu|p A dhglp, d?hsp(L)) = O.

(iv) The tangentlines of the projections of a pair of crease cuged My, M3z N My
are parallel at their point of intersection if and only if

7l(p,t, @) := ((dhylp A dhalp) A (dhaligy Adhglie), L) =0,  t#£0.

(v) Finally, the tangent lines of a fold &fl; and of a projected crease cuivg N M3
are parallel at their point of intersection if and only if

mle(p,t, @) i= (dhylp, dholiy Adhslie) =0,  t#0.
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