
Discrete Comput Geom 20:205–229 (1998) Discrete & Computational

Geometry
© 1998 Springer-Verlag New York Inc.

Notes on the Complexity of Exact View Graph Algorithms for
Piecewise Smooth Algebraic Surfaces∗

J. H. Rieger

ICMSC, Universidade de S˜ao Paulo,
Caixa Postal 668, 13560-970 Sao Carlos – SP, Brazil
rieger@icmsc.sc.usp.br

Abstract. The view graph of a surfaceN in 3-space is a graph embedded in the spaceV of
centers or directions of projection, whose nodes correspond to maximal connected regions
of V which yield equivalent views ofN. The size of the view graph of a piecewise smooth
algebraic surfaceN with transverse self-intersection curves and isolated triple-points and
cross-caps isO(nK dimVd6 dimV ), wheren andd denote the number of “component surfaces”
of N and their maximal degree, respectively, and whereK = 6 in general orK = 3 for
N diffeomorphic to the boundary of a polyhedron. (For surfaces without cross-caps, this
bound has been established in [17].) Also, for the special piecewise linear case, whered = 1
andK = 3, it is known that the size of the view graph is actually2(n3 dimV).

It is shown that the exact view graphs of such surfaces can be determined in
O(nK (2 dimV+1)) ·P(d, L) time by a deterministic algorithm and inO(nK dimV+ε) ·P(d, L)
expected time by a randomized algorithm. HereP is some polynomial,L is the maximal co-
efficient size of the defining polynomials ofN, andε is an arbitrarily small positive constant.
Note that the randomized algorithm is, in terms of combinatorial complexity (whered andL
are assumed to be constants which do not depend onn), nearly optimal—its combinatorial
time complexity exceeds the size of the view graph only byε in the exponent.

1. Introduction

The computation and complexity of view (or aspect) graphs of surfaces in 3-space has
been the subject of a fair number of works in the fields of computational geometry and
computer vision. The survey article by Bowyer and Dyer [2] gives a good overview
of the works on polyhedral surfaces up to 1990 from a computer-vision point of view.
Related works in the fields of combinatorics and computational geometry on visibility
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problems and the number of topologically distinct views of “polyhedral terrains” (i.e.,
special polyhedral surfaces given as function graphs) are summarized in the recent book
by Sharir and Agarwal [18] (see also the discussion at the end of this paper). The recent
survey [15] concentrates on view graphs of smooth and piecewise smooth algebraic
surfaces (the latter include both smooth as well as polyhedral surfaces as special cases);
most (algorithmic) works on this subject have appeared after 1990.

In [17] we have studied the complexity of view (or aspect) graphs of piecewise smooth
algebraic surfacesM having transverse self-intersection curves (“crease curves”) and iso-
lated triple points and of subsetsM ′ ⊂ M representing the boundaries of semialgebraic
solids. In this work we have also presented exact symbolic algorithms for computing the
view graphs ofM andM ′ and have illustrated the results produced by an implementation
of these algorithms for simple example surfacesM andM ′ ⊂ M .

Much remains to be done in terms of analyzing and improving the running times of
these algorithms. The algorithm in [17] for the surfacesM has a polynomial running
time, but we did not attempt to give a specific bound for the degree of this polynomial
(which would have been far from optimal). For bounding surfacesM ′ ⊂ M of solids the
worst-case running time of the algorithm in [17] is exponential in the number of unions
appearing in the defining formula of the solid.

Meanwhile there have been two new developments in the fields of computational
geometry and classification of singularities which form the basis for the algorithms
described in the present paper. These algorithms are more efficient and (slightly) more
general than the ones in [17]. First (and relevant for the efficiency aspect) there is the
work by Chazelle et al. [4] and by Sharir and Agarwal [18] in the field of computational
geometry and combinatorics which yields algorithms for stratifying semialgebraic sets
which are much more efficient, in terms of combinatorial complexity, than previous
algorithms. Givenn polynomials inD variables, the algorithms in [4] and [18] determine
a decomposition ofRD into O(n2D−3+ε) sign-invariant connected cells of “simple shape”
for which point-location queries can be answered inO(logn) time. This decomposition
can be determined by a deterministic algorithm inO(n2D+1) time and by a randomized
algorithm in O(n2D−3+ε) (for D ≥ 3) or O(n2+ε) (for D = 2) expected time (see
Theorems 8.21 and 8.23 in [18] and the introduction in [4]). Second, there is the recent
classification by Carter et al. [3] of sequences of projectionsR4→ R3→ R2→ R of
knotted 2-surfaces in 4-space which, as a by-product, yields the codimension 1 views
of singular surfaces in 3-space having not only transverse intersection curves and triple-
points but also cross-caps.

These results, together with the rather detailed a priori knowledge about the topology
of the view bifurcation set from [17], enable us to obtain—in a fairly straightforward
way—exact view graph algorithms for surfacesM andM ′ (having additional cross-caps)
which have a near-optimal combinatorial time complexity.

1.1. Singular Surfaces and Bounding Surfaces of Solids

In this paper we are interested in “visibility problems” for the following two classes of
curved surfaces:

(i) Singular algebraic surfacesM = ⋃n
i=1 Mi , whereM and allMi have curves of

transverse self-intersections and isolated triple-points and cross-caps.
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(ii) Bounding surfacesM ′ of closed semialgebraic solids

S :=
U⋃

u=1

Iu⋂
i=1

{p ∈ R3 : hu,i (p) ≥ 0},

such thatM = ⋃
u

⋃
i h−1

u,i (0) is an algebraic surface with the kind of singular
points described in (i). Note that anyM ′ is a semialgebraic subset of someM .

Note, of course, that piecewise linear surfaces are special cases of the surfacesM
and M ′ above. In terms of space and time complexity of the algorithms below it is,
however, convenient to single out a special subclass of the surfacesM ′ for which sharper
complexity bounds can be obtained. Namely, the class (ii)′ of bounding surfacesM ′

of semialgebraic solids which can be deformed—by a nonlinear coordinate change in
R3—into the bounding surface of a polyhedron. The surfaces in this subclass haveO(m)
self-intersection curves,m being the number of faces, and no cross-caps—on the other
hand, a general surfaceM ′ has O(m2) self-intersection curves and also has isolated
cross-caps.

Also note that, for zero-sets, one expects in thegeneric casethat the component sur-
facesh−1

i (0) (resp.h−1
u,i (0)) arenonsingularand intersect transversely along intersection

curves and in isolated triple-points (this is an easy consequence of the Bertini–Sard
theorem). Furthermore, such surfaces—without cross-caps—are typically the ones that
are relevant in geometric and solid modeling. By contrast, surfaces given as images of
generic mappingsfrom 2-space into 3-space typically have transverse self-intersection
curves, triple-points as well as cross-caps (this is a classical result of Whitney [21]). This
more general class of surfaces is considered in this paper.

1.2. Combinatorial and Algebraic Complexity

Thecombinatorial complexityof the surfaceM is determined by the numbern of com-
ponent surfacesMi . The combinatorial complexity ofM ′ does a priori depend on the
number of unionsU and the numbers of intersectionsI1, . . . , IU required to define
the solid S. However, the total numbern := ∑U

u=1 Iu of “basic semialgebraic sets”
{p ∈ R3 : hu,i (p) ≥ 0} will be, for the purpose of this paper, a sufficiently fine measure
of the combinatorial complexity ofSand its boundaryM ′.

Thealgebraic complexityof the surfacesM andM ′ is given by the maximal degree
d of the component surfacesMi andh−1

u,i (0), respectively.
The time complexity of the algorithms described below depends onn andd as well

as on the coefficient sizes of the defining polynomialshi of the surfaces. So we set
L = supi |hi |1. Note that a polynomial-time algorithm in(n,d, L) also has a polynomial
running time in thebit-complexitymodel.

Finally, the following two (symbolic) constants will appear in the exponents of the
complexity estimates below. First, the dimension of the “viewing space”V which is
two in the case of parallel and three in the case of central projection. Second, for any
surfaceM or M ′ having onlyO(n) self-intersection curves we setK = 3, for general
surfaces (havingO(n2) self-intersection curves) we setK = 6. Note that, for surfaces
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M ′ which are diffeomorphic to the boundaries of polyhedra, we have thatK = 3 (recall
the discussion in Section 1.1 above).

1.3. Classifications of Views and the Definition of View Graphs

Let N be either one of the surfacesM or M ′, let S(N) denote the singular set ofN, and let
V = P2 (resp.R3\N) be the “view space” of all directions (resp. centers) of projection.
Givenq ∈ R3 andω ∈ V, parallel (resp. central) projection mapsq to the line throughq
parallel toω (resp. to the line joiningq andω). Let pω: N → P2 denote the restriction
to N of the parallel (resp. central) projection fromR3 into the “retinal plane”P2 along
the direction (resp. from the center)ω ∈ V. Define aviewof N fromω as follows:

vω(N) := pω(S(N)) ∪ pω(6ω(N)),

where6ω denotes the set of critical points of the mappω (in which dpω fails to have
full rank). From “almost all” directionsvω(N) is a curve in the retinal plane which is the
union of the projected self-intersection curves ofN and of the apparent contours of the
“faces” of N.

A pair of views of N is equivalentif one of them is mapped onto the other by a
diffeomorphism of the retinal plane. The actual classifications of views ofN use a
slightly different equivalence relation: a pair of projections ofN ⊂ R3 is equivalent if
there exist diffeomorphisms ofR3, preservingN, and of the retinal plane mapping one
projection onto the other. It is known that equivalence of projections implies equivalence
of views, but the converse is only true for equivalence classes (of projections and views)
of low codimension. In this paper we merely have to know all possible codimension
≤ 1 views (the stable and “minimally unstable” views), and for each of them there is
exactly one corresponding type of projection of the same codimension. Views of surfaces
N with transverse self-intersection curves and isolated triple points can have six types
of stableisolated singular points, corresponding to the codimension 0 orbits under the
equivalence relation above, and nineteen types ofunstablecodimension 1 singularities,
see [17]. For surfaces with additional cross-caps, we get one additional type of stable
singular point (a fold of the cross-cap) and three additional codimension 1 singularities,
see [3].

The view bifurcation setB ⊂ V of the family of all parallel or central projections
of N consists of all directions or centers of projectionω ∈ V which yield an unstable
view (that is, a view containing at least one singularity of codimension≥ 1). It has been
shown in [17] that the view bifurcation set of any surface with transverse self-intersection
curves and isolated triple points is a subset of view space of measure zero—however,
surfaces with quadruple points have region-filling view bifurcation sets.

Assuming that the view bifurcation setB ⊂ V of a surfaceN has measure zero, we
can define theview graph G(N) of N as follows:G(N) = (V, E) is a graph embedded
in V whose set of verticesV are the connected regions ofV\B and whose set of edges
E are the branches ofB of dimension dimV − 1 separating adjacent connected regions.
Note that all views obtained from within a single connected region ofV\B are related
by a diffeomorphism of the retinal plane. Traversing an edge of the view graphG(N)
corresponds to a “catastrophic change” in the view ofN.
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1.4. Results and Organization of Paper

Section 2 contains some piecewise smooth algebraic example surfaces and their view
graphs. (The examples have been computed with a slightly modified implementation of
the algorithms in [17]. The modifications take care of cross-caps and other singularities on
the component surfaces ofM . The more substantial modifications described in Section 4
below have not yet been implemented.)

In Section 3 we present a table of necessary and sufficient conditions for a direction
or center of projectionω to lie in the view bifurcation setB (orB′) of M or M ′. In other
words, the conditions in this table “recognize” all degenerate views ofM (or M ′). The
conditions are derived from the recent classification of codimension 1 views of such
surfaces in [3].

In Section 4 we study the time complexity of algorithms for determining the exact
view graphsG(·) of piecewise smooth algebraic surfacesM and of bounding surfaces
M ′ of semialgebraic solids. We show that bothG(M) andG(M ′) can be determined
in O(nK (2 dimV+1)) · P(d, L) time by a deterministic algorithm or inO(nK dimV+ε) ·
P(d, L) expected time by a randomized algorithm. The combinatorial complexity of the
randomized algorithm is only by an arbitrarily small positive constantε greater than the
size of the view graphG(·) which is of orderO(nK dimVd6 dimV). It is known that, in the
special case of polyhedra whered = 1 andK = 3, the size of the view graph is actually
2(n3 dimV), see [16]. So, from a combinatorial point of view, the randomized algorithm
is nearly optimal.

The overall combinatorial structure of the algorithm forM is the same as in [17],
except that, in one substep, the (by now classical) cylindrical algebraic decomposition
algorithm by Collins is replaced by the semicylindrical decomposition algorithm de-
scribed in [4]. Additional modifications of the algebraic part of the algorithm are also
necessary, due to the presence of singular component surfaces ofM .

For bounding surfacesM ′ of semialgebraic solids we describe a new polynomial-
time algorithm—the algorithm forM ′ in [17], by contrast, has a running time which is
exponential in the number of unionsU in the defining formula of the solid.

In Section 5 we present bounds for the degree of the view bifurcation set and for the
number of nodes in the view graph of surfaces having cross-caps, as well as curves of
transverse self-intersections and isolated triple-points. The complexity of view graphs
of surfaces without such cross-caps have been studied previously by Rieger [17] and
Petitjean [14]. Using the necessary and sufficient conditions for unstable views presented
in Section 3 we show that the asymptotic complexity of the size of view graphs of surfaces
with cross-caps is the same as that of piecewise smooth surfaces without cross-caps,
namelyO(nK dimVd6 dimV).

Finally, in Section 6, we discuss some recent works on visibility problems and view
graphs, relate them to the results in the present paper and mention some open problems.

2. A Few Examples

Perhaps it is best to begin with some examples of piecewise smooth algebraic surfaces and
their view graphs (for parallel projection). For parallel projection, the view bifurcation
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setB ⊂ P2 of a surfaceN is the dual of the view graphG(N). If (a : b : c) are
homogeneous coordinates inP2, then the computation ofG(N) can be carried out in
the affine chart(1,b, c) with the understanding that pairs of antipodal regionsr+, r−,
i.e., nodes ofG(N), are to be identified, unless their closures contain componentsC of
B at infinity. In this case the nodesr+ andr− are either connected by an edge, ifC is
a subarc of the line at infinitya = 0, or not if dimC = 0. All three example surfaces
below have certain symmetries which, in turn, induce symmetries ofB andG(N) in the
plane(b, c). Below, we use the notational convention that regions in the complement
of B, i.e., nodes ofG(N), which are related by some reflection in the(b, c)-plane are
denoted by the same numbers.

Example 1. The zero-setM of h = x2y2 + x2z2 + y2z2 − xyz is known as Steiner’s
Roman surface (see Chapter VII of [10] and Chapter 6, Section 46 of [9]). The surfaceM
has six cross-caps at(± 1

2,0,0), (0,± 1
2,0), (0,0,± 1

2). There are three lines of double-
points (the coordinate axes) connecting pairs of cross-caps and intersecting at the origin
in a triple-point. Strictly speaking, Steiner’s Roman surface is the semialgebraic surface
(having the same view graph asM) given by

M\({x2 > 1
4, y = z= 0} ∪ {y2 > 1

4, x = z= 0} ∪ {z> 1
4, x = y = 0}),

i.e., only the intervals [− 1
2,

1
2] of the coordinate axes belong to the surface. See Fig. 1

for a picture of Steiner’s surface. The view graphG(M) of M , shown in Fig. 2, has 88
nodes. For Steiner’s surfaceB andG(M) are point-symmetric about the origin. Figure 3
shows a view ofM associated to node number 36 (for space reasons, we do not show
the views associated with the other nodes ofG(M)).

Fig. 1. Steiner’s Roman surface.
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Fig. 2. The parallel projection view graph of Steiner’s Roman surface: the dashed circle indicates the line at
infinity a = 0 and edges cuttinga = 0 connect equally numbered antipodal nodes.

Example 2. The boundaryM ′ of the union of two solid half-spheres defined by

({2− (x + 1)2− y2− z2 ≥ 0} ∪ {2− (x − 1)2− y2− z2 ≥ 0}) ∩ {z≥ 0}
has two triple points lying on three circles of double-points (see Fig. 4). The view graph
G(M ′) of M ′ has 26 nodes and is equal to the view graph of the surfaceM ⊃ M ′ which
is given by the zero-set of

(2− (x + 1)2− y2− z2)(2− (x − 1)2− y2− z2)z.

These view graphs are symmetric under reflections in the linesb = 0 andc = 0 and are
shown in Fig. 5. Figure 6 shows the views ofM andM ′ associated to node number 1 in
the view graph.



-0.4 -0.2 0 0.2 0.4

-0.2

-0.1

0

0.1

0.2

0.3

x

y

Fig. 3. A view of Steiner’s Roman surface from node number 36.

Fig. 4. The union of two solid half-spheres.



Fig. 5. The parallel projection view graph of the bounding surface of two solid half-spheres: the dashed
circle indicates the line at infinitya = 0 and edges cuttinga = 0 connect equally numbered antipodal nodes.

Fig. 6. A view of the bounding surfaceM ′ of two solid half-spheres from node number 1: crossed-out curves
belong to view ofM\M ′.
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Remark. The above example is somewhat untypical. In general, the graphG(M ′) is
smaller than the graphG(M), for M ′ ⊂ M (see Fig. 2 of [17] for a more typical example).

3. Defining Conditions of the View Bifurcation Set

The view bifurcation set of a surface consists of all directions or centers of projection
giving rise to some degenerate view of this surface. The classification of projection-
maps, for singular surfaces with transverse self-intersection curves (“crease curves”)
and isolated triple-points, and cross-caps, yields 7 equivalence classes of isolated stable
singularities (of codimension 0) and 22 minimally unstable singularities of codimension
1. In this classification, two projection-maps are considered to be equivalent if one is
mapped onto the other by a diffeomorphism ofR3 preserving the projected surface and
a diffeomorphism of the retinal plane. The “view types” in column 2 of Table 1 refer
to the normal forms of the 22 equivalence classes of codimension 1: the view types
for j = 1 to 19 constitute a complete list of codimension 1 views for surfaces without
cross-caps and can be found in Proposition 4.1 of [17]. The three remaining view types
( j = 20, 21, 22) involve cross-caps:j = 20 corresponds to the second normal form

Table 1. Minimally unstable view types.

Intersection Additional
j = View type (“name”) multiplicity conditions

1 8 (lip/beak) ([3]) Dreg= 0 ∗
2 7 (swallowtail) ([4]) —
3 5+5+5 (fold triple-crossing) ([2], [2], [2]) —
4 6+5 (cusp fold crossing) ([3], [2]) —
5 5++5 (tacnodal fold crossing) ([2], [2]) N‖ = 0
6 III 2 (semilip/beak) ([2,1]) C6‖ = 0 ∗
7 IV (semicusp) ([3,1]) —
8 VII1 (crease-cusp) ([2,2]) —
9 1+1+1 (crease triple-crossing) ([1,1], [1,1], [1,1]) —

10 1++1 (tacnodal crease crossing) ([1,1], [1,1]) π
‖
C = 0

11 6+1 (cusp crease crossing) ([3], [1,1]) —
12 5++1 (tacnodal fold crease crossing) ([2], [1,1]) π

‖
6C = 0

13 5+5+1 (fold fold crease crossing) ([2], [2], [1,1]) —
14 5+1+1 (fold crease crease crossing) ([2], [1,1], [1,1]) —
15 5+II (fold semifold crossing) ([2], [2,1]) —
16 II+1 (semifold crease crossing) ([2,1], [1,1]) —
17 S(5+Y) (fold vertex crossing) ([2], [1,1,1]) —
18 S(1+Y) (crease vertex crossing) ([1,1], [1,1,1]) —
19 S(Y6) (semifold-vertex) ([2,1,1]) —
20 W61,1 (cross-cap-cusp) ([3]) W = 0
21 W+5 (cross-cap fold crossing) ([2], [2]) W = 0
22 W+1 (cross-cap crease crossing) ([2], [1,1]) W = 0
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in Theorem 8.6.1 in the thesis of West [20], and the normal forms forj = 21 and 22
are given in Section 4.1(ii) of [3]. We do not list these normal forms here (they are not
very enlightening and require some extra notation for multigerms of maps) and refer the
reader to the original classifications, but in Section 3.1 we discuss the geometry of the
additional view types involving cross-caps.

The unstable views can be “recognized” by certain conditions that involve the inter-
section type of a ray of projection with a surface at a set of points and, in some cases,
the “local geometry” of the surface at these intersection points. More precisely, a view
contains one of the 22 codimension 1 singularities (or some codimension≥ 2 singularity
in their closure) if and only if at least one pair of conditions in columns 3 and 4 of Table 1
is satisfied.

Thenotation for the intersectionmultiplicities incolumn3 isas follows.Letp1, . . . , pk

be a set of points and letbi denote the number of surface branches atpi . Consider a ray
of projectionl (t) = p+ t ·L, whereL = ω (for V = P2) or L = ω− p (for V = R3\M).
The intersection multiplicities of the rayl (t) with each surface branch at ak-tuple of
points are then denoted by

([i11, . . . , i1b1], . . . , [i k1, . . . , i kbk ]).

Strictly speaking, we should replace all intersection multiplicitiesiab in column 3 by
≥ iab (equality holds for the codimension 1 views, greater intersection multiplicities
yield codimension≥ 2 views). The equations in column 4 vanish if certain geometric
conditions hold (for example, the point is a parabolic point or a cross-cap of the surface)
and will be explained later.

We now have the following:ω ∈ V belongs toB (resp.B′) if, for somek-tuple of
points inM (resp.M ′), at least one of the 22 pairs of conditions in columns 3 and 4 of
Table 1 are satisfied.

The conditions in Table 1 are described in more detail in the remainder of this section.
The major differences between the conditions for unions of component surfaces with
self-intersection curves, triple-points, and cross-caps and the corresponding conditions
in [17] for unions of regular component surfaces are as follows:

• The cross-caps give rise to additional view singularities that are described in Sec-
tion 3.1.
• At the singular points ofM one has to consider theintersection multiplicityof a ray

of projection and the varietyM :=⋃ h−1
i (0) rather than the contact order—at non-

singular points both concepts coincide. Furthermore, there are now, for example,
three types of triple-points ofM : the three “local surface branches” can glob-
ally lie on one, two, or three different component surfaces. The conditions for the
intersection multiplicities are slightly different in the three cases, see Section 3.2.
• The “geometric conditions” in [17] (which are briefly summarized in the Appendix)

have to be modified substantially in some cases, otherwise they would vanish iden-
tically on the singular sets of the component surfaces ofM . Also, some “geometric
conditions” fail to define complete intersections—this is in contrast to the “generic
case” of unions of regular component surfaces studied in [17]. The necessary mod-
ifications of the “geometric conditions” are described in Section 3.3.
• Finally, certain types of codimension 1 views are detected by several of the 22
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conditions in Table 1, see Section 3.4 below. This is also essentially due to the fact
that we now allow nongeneric zero-setsM .

To save indices, we writeM := ⋃i h−1
i (0) in the present section, rather thanM :=⋃

u,i h−1
u,i (0).

3.1. The Additional View Types Involving Cross-Caps

The surface parametrized by the map

X: R2→ R3, (u, v) 7→ (u,uv, v2)

has a cross-cap at the origin, and the imageX(R2) is given by the semialgebraic set

{y2− x2z= 0}\{x = y = 0, z< 0}.

Take a linel (t) := (at,bt, ct), (a : b : t) ∈ P2, through the origin and compose it with
the implicit defining equationh := y2− x2z of the cross-cap:

h ◦ l (t) = b2t2− a2ct3.

We see that the intersection multiplicity of the line and the cross-cap is 2 forb 6= 0, 3 for
b = 0 andac 6= 0, and infinite for the special linesa = b = 0 anda = c = 0. The lines
of intersection multiplicity≥ 3, corresponding tob = 0, are contained in the tangent
cone of the cross-cap, which is given by the lowest order homogeneous term ofh, i.e.,
by y2 = 0.

The projections of the cross-cap along some ray not contained in the tangent cone
yield folds of the cross-cap, which are locally stable (there is an open set of such rays
given byb 6= 0). For “most” rays in the tangent cone (the ones for whichb = 0 but
ac 6= 0) we obtain cusp views of the cross-cap (of type W61,1), see entryj = 20 in
Table 1 and Fig. 7. The last two entries in Table 1 are bilocal view singularities: in type
W+5 a fold of a cross-cap and an ordinary fold line are superimposed, and in type W+1
a fold of a cross-cap and a projected crease line are superimposed, see Fig. 8.

Fig. 7. A cusp view of the cross-cap (center) and nearby stable views (left and right).
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Fig. 8. A (fold or crease) line passing through a fold view of the cross-cap (center) and nearby stable views
(left and right).

3.2. Singular Component Surfaces: Intersection Multiplicities

The intersection multiplicity ofl (t) and asinglecomponent surfaceMi = h−1
i (0) at pm

is given by the order of the functionK (t) := hi ◦ l (t) at tm = l−1(pm). For K to have
ordera at tm, it is necessary thatd j K (t)/dt j , 0≤ j ≤ a− 1, vanish att = tm.

For surfacesM , whose component surfacesMi are singular, there are, for example,
several distinct possibilities for interpreting the intersection multiplicity [a,b, c] at a
triple point pm of M . Note thatpm can (globally) lie on

(i) three distinct component surfacesM1,M2,M3 of M whose intersection multi-
plicities with l (t) area, b, andc, respectively;

(ii) on a pair of component surfacesM1,M2, one of them having a self-intersection
S(M1) at pm, and intersection multiplicitiesa+b andc (or a+ c, b or a, b+ c);
or

(iii) on a single component surfaceM1, having a triple pointT(M1) at pm and
intersection multiplicitya+ b+ c.

In cases (ii) and (iii) we sometimes write [a+b, c] and [a+b+ c], rather than [a,b, c],
for the required intersection multiplicity atpm; and in case (ii) we also require that
pm ∈ S(M1) and in case (iii) thatpm ∈ T(M1) (the conditions for a self-intersection
and a triple point of a component surface are described below).

3.3. Singular Component Surfaces: Geometric Conditions

We begin with the conditions for the singular points ofM . Let S(M) denote the closure
of the self-intersections ofM , and letT(M) andW(M) denote the sets of triple-points
and of cross-caps (Whitney umbrellas). The conditions for a pointp to lie in one of
these sets are as follows—recall thatMi = h−1

i (0) and note that the conditions on the
right-hand side must hold for some 1≤ i ≤ n or for somek-tuple of distinct indices
1≤ im ≤ n (1≤ m≤ k):

• p ∈ S(M)⇔ (i) p ∈ Mi1 ∩ Mi2 or (ii) p ∈ S(Mi );
• p ∈ T(M)⇔ (i) p ∈ Mi1 ∩Mi2 ∩Mi3 or (ii) p ∈ S(Mi1)∩Mi2 or (iii) p ∈ T(Mi );
• p ∈ W(M)⇔ p ∈ W(Mi ).
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Furthermore, the conditions forp to lie in the self-intersection locus or in the triple-
point or cross-cap set of a single component-surfaceMi are as follows:

• p ∈ S(Mi )⇔ hi (p) = dhi (p) = 0;
• p ∈ T(Mi )⇔ p ∈ S(Mi ) and rank(d2hi )p = 0;
• p ∈ W(Mi )⇔ p ∈ S(Mi ) and rank(d2hi )p = 1.

The triple-points ofMi are therefore given by the vanishing ofhi , of the components of
dhi , and of the entries of the Hessiand2hi . The conditions for the cross-caps are slightly
more complicated: if the entries of the Hessian are simply replaced by the 2 by 2 minors,
then the resulting conditions detect cross-caps as well as triple-points. The vanishing
ideal of the cross-caps is the union of(hi ,dhi ) and the ideal quotientI : J, whereI is
generated by the 2 by 2 minors andJ by the entries ofd2hi . The system of generators
of this vanishing ideal is denoted byW in Table 1.

Next, we consider the remaining “geometric” conditions in column 4 of Table 1. For
j = 1,5,6,10,12 and regular component surfacesMi , these conditions are given in
each case by the vanishing of a single polynomial equation supplementing the conditions
for the intersection multiplicities in column 3 (see the Appendix and Section 3.2 of [17]
for explicit expressions). For singular component surfaces, certain modifications of these
conditions are necessary which, except forj = 1 and 6, are very minor.

The modifications forj = 1 and 6 are as follows. The conditionDi = 0 for a parabolic
point of a regular zero-setMi = h−1

i (0) (see the Appendix) vanishes not only on the
parabolic setP(Mi ) but also on the singular setS(Mi ) of a singular component surface
Mi . What makes matters worse, the (unwanted) componentS(Mi ) creates solutions of
the recognition equations having higher dimension than the view bifurcation set that we
want to compute. We therefore replace the conditionshi = Di = 0 by a set of generators,
denoted byDreg, of the following ideal quotient:

I (Dreg) := (hi , Di ) : Jhi ,

whereJhi denotes the Jacobian ideal ofhi (which is generated by the components of
dhi ). Note that I2 := (hi ) + Jhi is the ideal of functions vanishing onS(Mi ) and
that such functions also belong to the idealI1 := (hi , Di ). The quotientI1 : I2 is
contained in the vanishing ideal of the closure of the set(P(Mi )∪ S(Mi ))\S(Mi ) (and,
for I1 =

√
I1, is equal to it) and is equal toI (Dreg) (the latter equality follows from

I1 : I2 =
⋂

f ∈I2
I1 : ( f ) and I1 : (hi ) = k[ p], wherek denotes the ground field).

For j = 6 there are two cases: the double-curve (i) is the intersection of distinct
component surfaces and (ii) is the self-intersection of a single component surface. In
case (i) we use the condition given in the Appendix, in the latter case (ii) we replace the
expression for the tangent lines of the double-curves ofM , which vanishes identically
on S(Mi ), by the following. Observe thatd2hi has corank 1 alongS(Mi ) except at
isolated points: at cross-caps and triple-points ofMi the corank is 2 and 3, respectively.
Let α be a vector along the kernel direction of the gradient mapdhi : R3→ R3 and set
m := 〈α,d2hi (L)〉. In the absence of cross-caps and triple-points onS(Mi ), m could
be taken as the new condition forC6‖, but any such singular point would create an
(unwanted) excess component in the bifurcation set. Hence, in general, we again have
to compute the generators of an ideal quotientI1 : I2, whereI1 is the ideal generated
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by m, hi , Jhi , andd2hi (L , L) and whereI2 is generated by the vanishing of the 2 by 2
minors ofd2hi .

3.4. Singular Component Surfaces: Hierarchy of Dependencies between
Defining Conditions

For surfacesM which are unions of nonsingular zero-setsMi (the “generic case”) each
condition in Table 1 will “recognize” exactly one type of codimension 1 view ofM , in
this sense the conditions are “independent.” For singular component surfacesMi this
is no longer true. In this case there exist strictly antisymmetric dependency relations
between certain pairs of conditionsA and B, denoted byA → B. That is, A holds
automatically ifB does, but not vice versa. In principal,B could be modified to recover
independence fromA: if I (A) and I (B) are the ideals defined by the conditions ofA
andB, then we had to replaceB by the generators of the idealI (B) : I (A). However,
the (costly) computation of these generators can be avoided, knowing the dependencies
is sufficient.

In describing the dependencies we denote each condition by its numberj in Table 1
and a subscript indicating its intersection multiplicity. Recall thatk-local conditions
involve k-tuples of intersection multiplicities([i1], . . . , [i k]), where [i l ] = [a,b] or
[a,b, c] at a double- or triple-point ofM . We now have to distinguish multiple points of
M which arise from the same or from distinct component surfaces: for example, [a,b, c],
[a+b, c], and [a+b+ c] denote the intersection multiplicities at triple-points ofM cut
out by 3, 2, and 1 component surface.

Using this notation, the hierarchy of dependencies amongst the defining conditions
is given by the following sequences:

2([4]) ← 7([3+1]) ← 19([2+1+1])

↖ ↙
8([2+2])

3([2],[2],[2])← 13([2],[2],[1+1])← 14([2],[1+1],[1+1])← 9([1+1],[1+1],[1+1]),

4([3],[2]) ← 11([3],[1+1]) ← 16([2+1],[1+1]) ← 18([1+1+1],[1+1])

↖ ↙
15([2+1],[2]) ← 17([1+1+1],[2])

5([2],[2])← 12([2],[1+1])← 10([1+1],[1+1]),

and
21([2],[2])← 22([2],[1+1]).

All the codimension≥ 1 views recognized by the conditions of some given sequence
are simultaneously recognized by the corresponding “terminating condition” on the left.
Each sequence could therefore be represented by its terminating condition. In practice,
however, it is often better first to determine the components of the bifurcation set defined
by the rightmost conditions in a sequence and then work from right to left. In this way, we
can factor out the components already recognized by other conditions in the sequence.
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4. The Time Complexity of Computing View Graphs

Applying the recognition conditions in Table 1 to algebraic surfacesM yields the defining
equations of algebraic sets̃Bj,r ⊂ V ×Rkj+2, wherekj = 1, 2, or 3 for local, bilocal, or
trilocal singularities of the projection (there are no≥ 4-local codimension 1 views, and
the views of higher codimension are all “recognized” by the conditions in Table 1). The
first index j of B̃j,r ranges over the 22 view types and the second indexr enumerates the
possible tuples of component surfacesMi involved in a view of typej . We can think of
the unionB̃ of these algebraic sets as being embedded inV ×R5, note thatRkj+2 has at
most dimension 5. The restriction of the projectionπ : V×R5→ V to B̃ yields the view
bifurcation setB of M , which is a closed semialgebraic subset ofV. The view bifurcation
setB′ of M ′ ⊂ M is a semialgebraic subset ofB—the “branches” ofB\B′ consist of
centers or directions of projectionω ∈ V which yield unstable views of “pieces” ofM
which do not belong to the boundaryM ′. On the other hand,B is a subset of the closed
real algebraic set̂B which is the projection of the complexification of̃B into V. This
set-up is summarized in the following diagram:

B̃ ⊂ V × R5yπ
B′ ⊂ B ⊂ B̂ ⊂ V

The following properties of the view bifurcation setsB andB′ of surfacesM and
M ′ are essential in the algorithms described below. For surfaces with transverse self-
intersection curves and isolated triple points, these properties have been established in
[17]. Looking at the proofs in [17] we see that these properties still hold for surfaces with
additional cross-caps. LetP∞ (resp.Palg) denote the class of infinitely differentiable
(resp. algebraic) surfaces with transverse self-intersection curves and isolated triple-
points and cross-caps (where, of course,Palg ⊂ P∞), then we have the following:

1. B (and henceB′) has positive codimension inV for anyM ∈ P∞ (see Proposition
2.1 of [17]).

2. B andB′ have no “free boundaries” inV of codimension 2 for anyM,M ′ ∈ Palg.
In particular, the boundary of any “component”Bj,r (or B′j,r ) of B (or B′) always
lies in some other componentBj ′,r ′ (or B′j ′,r ′ ) (see Propositions 2.3, 5.2, and 5.3
of [17]).

3. There areO(nK ), K = 6 or 3, componentsBj,r . However, for anyM ∈ Palg, the
boundary ofBj,r will lie in O(1) other components which are known a priori (see
case (i), Section 5(d)(i) of [17]).

4. Likewise, there areO(nK ), K = 6 or 3, componentsB′j,r . However, for any
M ′ ∈ Palg, the boundary ofB′j,r will lie in O(n) other components which are
known a priori (see case (ii), Section 5(d)(i) of [17]).

Property 1 ensures that the view graph ofM (and hence ofM ′) always exists. Property
2 implies that we can “recover” the semialgebraic setsB andB′ from the algebraic set̂B
(recall the diagram above) by computing certain cell-decompositions inV—by contrast,
for general semialgebraic setsB arising as projections of some algebraic setB̃ ⊂ V×R5

one has to compute cell-decompositions of the total spaceV ×R5. Finally, properties 3
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(and 4) yield relatively coarse “stratifications” ofB̂ (andB)—consisting ofO(nK ) (or
of O(nK+dimV)), as opposed toO(nK dimV), “branches”—from whichB (andB′) can be
constructed by deleting those branches that lie inB̂\B (or in B\B′). Note that there are
O(nK ) componentŝBj,r andBj,r : cutting eachB̂j,r with at mostO(1) other components
yields O(nK ) branches ofB̂. On the other hand, cutting a componentBj,r ⊂ V with at
mostO(n) other components yieldsO(ndimV) branches ofBj,r and hence a total number
of O(nK+dimV) branches ofB. Note that the estimate ofO(ndimV) for the number of
branches ofBj,r is very conservative: a bound of Milnor [12] says that the sum of the
Betti numbers of the union ofO(n) components isO(ndimV), but we are only interested
in the number of branches on a single component.

We can now give a rough outline of our algorithm, which consists of a preprocessing
step and three (resp. four) main steps forM (resp.M ′). Compared with the algorithm in
[17], the modified step 2 now has the highest combinatorial complexity and the new step
4 has a polynomial running time (by contrast, step 4 in [17] has an exponential running
time). The exposition below concentrates on the combinatorial aspects of the algorithm,
the algebraic parts are the same as in our earlier algorithm and have been described in
[17] (note, in particular, that for a fixed numbern of input surfacesM = ⋃n

i=1 Mi the
running time of both the old and the new algorithm is polynomial in the maximal degree
and bit-length of the defining polynomials of the surfaces).

First, we need the following notation. If
⋃U

u=1

⋂Iu
i=1{p ∈ R3 : hu,i (p) ≥ 0} is the

defining formula of the solid with boundaryM ′, then we set

H := {h1,1, . . . , hU,IU } ⊂ Q[ p].

Recall that a connected subsetY of R3 is said to beH -invariant if all polynomials inH
are sign-invariant onY (i.e., are either strictly positive, negative, or vanish).

We first apply the semicylindrical stratification algorithm of Chazelle et al. [4] to
the set of defining polynomialsH ⊂ Q[ p] of the input solid, in order to prune away
the setsB̃j,r that correspond to (empty!) components of the bifurcation set arising from
surface-tuples that do not intersect (overR). The time required for this preprocessing step
is O(n7) (using the deterministic algorithm in [4]) orO(n3+ε) (using the randomized
algorithm in [4]). This completes the “preprocessing” for the view graph algorithm for
the zero-setsM .

For the bounding surfacesM ′ ⊂ M we also prune away thosẽBj,r that correspond to
surfaces, surface-pairs, and -triples that belong toM\M ′. Such surface-tuples correspond
to empty componentsB′j,r of the view bifurcation set ofM ′. This extra pruning can be
done within the same asymptotic time, and the criteria for being part of the boundary
M ′ are the same as in step 4 of the algorithm below. This leaves

nK ∼ O(n3+ n2D + nD2+ D3+ nT + DT)

componentsB̃j,r to be considered further, wheren = ∑
Iu and whereD and T are

the numbers of surface-pairs and -triples that intersect overR (passing the first pruning
stage) or lie in the boundaryM ′ of the solid (second pruning). For surfaces of general
type, D ∼ O(n2) and T ∼ O(n3) so thatK = 6. For surfaces diffeomorphic to a
polyhedral surface havingO(n) edges and vertices, we haveK = 3.
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The view graph algorithms forM (for M ′) in the present work, and the ones in [17],
then consist of the following very high-level steps 1–3 (1–4):

1. Compute, for the remaining̃Bj,r , the (radicals of the) elimination idealsI (B̃j,r )∩
Q[ω], for 1 ≤ j ≤ 22 and 1≤ r ≤ c( j ) ∼ O(nK ). Result: the defining
polynomials of real algebraic setŝBj,r .

2. Determine the connected components ofV\B̂, whereB̂ =⋃j,r B̂j,r .

3. DecomposeB̂ into O(nK ) branches and remove the branches that lie inB̂\B.
Result: the view graphG(M).

4. DecomposeB into O(nK+dimV) branches and remove the branches that lie in
B\B′. Result: the view graphG(M ′).

Remark. The “branches” in steps 3 and 4 are, in general, smaller than the components
Bj,r andB′j,r of B andB′, respectively. We have already pruned away those components
ofB andB′ corresponding to surface-tuples that don’t intersect over the reals or do not lie
in the boundaryM ′. Steps 3 and 4 remove certain branches of the remaining components
of B andB′.

We now consider some of these steps in more detail in order to determine their time
complexity.

The eliminationstep 1uses standard tools from computational algebra and clearly
requiresO(nK ) ·P(d, L) time (note that the defining polynomials ofBj,r have a constant
number of variables and their degree and coefficient size isO(d)andO(L), respectively).

Step 2is based on a sign-invariant decomposition ofV with respect to the defining
polynomials of theO(nK ) algebraic setŝBj,r . In [17] step 2 is based on one (forV = P2)
or several (forV = R3) cylindrical algebraic decompositions ofR2. Replacing the
cylindrical algebraic decomposition (which is the computational bottleneck in step 2)
by a semicylindrical decomposition (as defined by Chazelle et al. [4]) ofR2 or R3

still allows us to determine the regions ofV\B̂ in the same way as in [17]. Using the
deterministic algorithm described in [4], step 2 requiresO(nK (2 dimV+1)) ·P(d, L) time,
and with the randomized algorithm from [4] the expected running time of step 2 becomes
O(nK dimV+ε) · P(d, L).

In step 3we pick one sample pointω′ ∈ S in each of theO(nK ) branches ofB̂. For
ω′ ∈ B̂j,r we check whether the specialization of the idealI (B̃j,r ) toω = ω′ has a positive
number of real roots, if not we removeS. Step 3 can be carried out inO(nK ) · P(d, L)
time.

Remark. The sample pointsω′ in steps 3 and 4 can be chosen such that the specializa-
tion of I (B̃j,r ) to ω = ω′ has isolated roots, see [17]. The definitions of the “branches”
(with the appropriate extensions for the additional view typesj = 20,21,22) and the
determination of “good” sample points in steps 3 and 4 are the same as in our earlier
algorithm, and we refer the reader to Section 5(d)(ii) of [17] for the (algebraic) details.

Likewise, in step 4we pick one sample pointω′ ∈ S in each of theO(nK+dimV)
branches ofB. Below, we describe a new polynomial-time decision procedure for check-
ing whetherω′ belongs toB′; if not, we remove the branchS. (Note that the “old” decision
procedure described in [17] has to count the number of real roots of up ton3(U−1) sys-
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tems of polynomial equations and inequalities.) The new procedure for removing from
B those branchesS that do not belong toB′ is as follows:

begin {Step 4}
DecomposeR3 into H -invariant cellsC and label the cellsC ⊂ M ′ as
boundary-cells;
for each branchS⊂ B do

Pick some algebraic representativeω′ ∈ S;
b := FALSE;
for each root(pm; λm

1 , . . . , λ
m
kj−1), 1≤ m≤ ρ, “over” ω′ do

Determine the real algebraic number coordinates of thekj -tuple
of points pm, l (λm

1 ), . . . , l (λ
m
kj−1);

Determine the cellsC1, . . . ,Ckj containing the points above;
if all these cells are boundary-cellsthen b := TRUE

od
if b = FALSEthen deleteS

od
end

Using the deterministic (resp. randomized) semicylindrical stratification algorithm
of Chazelle et al. [4] yieldsO(n3+ε) · P(d) H -invariant cells inO(n7) · P(d, L) time
(resp.O(n3+ε) ·P(d, L) expected time). (Recall that this stratification is already known
from the preprocessing step.) For eachH -invariant cellC of dimension≤ 2 we pick
a sample pointp (with algebraic number coordinates) and check whetherp ∈ M ′, as
follows. Let h̄1, . . . , h̄t ∈ H denote the polynomials vanishing on the cellC and define
Hu := {hu,1, . . . , hu,Iu} ⊂ H , 1≤ u ≤ U . Also setH̄ := {h̄1, . . . , h̄t },

H+ :=
⋃

Hu∩H̄ 6=∅
(Hu\Hu ∩ H̄)

and denote theHu whose intersection with̄H is empty byH−u . We labelC as a boundary-
cell if (i) for all h ∈ H+ the algebraic numberh(p) has positive sign and (ii) for eachH−u
there exists at least oneh′ ∈ H−u for whichh′(p) has negative sign. Checking whetherC
belongs to the boundaryM ′ therefore requiresO(n) · P(d, L) time for each cell (recall
that |H | = n and note that the signs of these algebraic numbers can be determined in
polynomial time). The first line of the above procedure therefore requiresO(n7)·P(d, L)
deterministic orO(n4+ε) · P(d, L) expected time.

Next, note that the outer loop will be executed at mostO(nK+dimV) ·P(d) times and
the inner loopP(d) times. Recall that the pointsl (λi ) are either given byp + λi · ω′
(for V = P2) or otherwise byp+ λi · (ω′ − p), whereλi and the coordinates ofp and
ω′ are algebraic numbers. We can compute the minimal polynomials of the coordinates
of the l (λi ) from the minimal polynomials of these algebraic numbers inP(d, L) time
(using the usual algorithms for adding and multiplying algebraic numbers encoded by
their minimal polynomials, see, e.g., the article by Loos [11] or Chapter 8.5 of the book
by Mishra [13]). Finally note that, again using the algorithms in [4], we can determine
the H -invariant cell containing some given pointp or l (λi ) in O(logn) · P(d, L) time
(note that the algebraic number coordinates of these points and theH -invariant cells are
defined by polynomials of sizeP(d, L)).
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Summing up, we see that the above procedure for removing the branches ofB that do
not belong toB′ requiresO(nK+dimV logn+n7) time using the deterministic algorithm in
[4] for computing anH -invariant stratification of 3-space orO(nK+dimV logn) expected
time using the randomized version.

Looking at the above bounds for the running times of the three (resp. four) steps of the
view graph algorithm forM (resp.M ′) we see that, from a combinatorial point of view,
step 2 dominates the asymptotic time complexity. The bounds for the running times of
the deterministic and randomized view graph algorithms stated in the introduction now
follow.

5. The Size of View Graphs

It is shown below that the upper bound in [17] ofO(nK dimVd6 dimV) for the number of
nodes in the view graph of a piecewise smooth surface, which is the union ofnnonsingular
surfaces of degree≤ d intersecting in double-curves and triple-points, remains valid for
the surfacesM (and henceM ′) studied in this paper. The double-curves and triple-points
of the surfaces studied in [17] are cut-out by pairs and triples of regular component
surfaces. On the other hand, the surfacesM are unions of singular component surfaces
with double-curves, triple-points, and cross-caps.

Note that this estimate for the number of nodes|V | in the view graphG = (V, E)
yields an upper bound for the size ofG, because|E| ∼ O(|V |). This special property
of view graphs—which is in contrast to complete graphs havingO(|V |2) edges—boils
down to the fact that the edges inE are top-dimensional branches of the bifurcation set
B and there are at mostO(nK dimVd6 dimV) = O(|V |) such branches.

One checks that the degrees of the view bifurcation setsB of M and of the surfaces
studied in [17] are of the same order, namelyO(nK d6), which yields the desired bound.
First, one observes that the presence of double-curves and triple-points on singular
component surfaces ofM does not change the degree bounds stated in [17] for the
componentsBj , 1≤ j ≤ 19, of the view bifurcation set. (Essentially this follows from
the fact that the degrees of the double-curve and of the triple-point set of a component
surface ofM are of orderd2 andd3, despite the fact that many equations are required to
define these sets.)

The result then follows from the following degree bounds for the additional compo-
nentsB20 toB22 of the view bifurcation set of surfaces with cross-caps.

Proposition 5.1. Let M = ⋃n
i=1 Mi , d = supi degMi , be a piecewise smooth alge-

braic surface with transverse double-curves and isolated cross-caps and triple-points.
Then the degree orders of the componentsB20, B21, andB22 of the view bifurcation set
are nd3, n2d5, and n3d5, respectively.

Proof. The components of the bifurcation set are unionsBj =
⋃c( j )

r=1Bj,r whose com-
binatorial complexity is given by

c( j ) =
(

n

m( j )

)
∼ O(nm( j )),
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wherem( j ) is the maximal number of distinct component surfacesMi involved in a view
singularity of typej . Clearly,m( j ) ≤ 1, 2 and 3 forj = 20, 21, and 22, respectively.

The remaining task, then, is to estimate the degree (as a function ofd) of a single
subsetBj,r ( j = 20,21,22). In doing this, the following lemma will be useful

Lemma 5.2. Let T(Mi ) and W(Mi ) denote the sets of triple-points and cross-caps
(Whitney umbrellas) of a degree d surface Mi with transverse double-curves and isolated
triple-points and cross-caps. Then the following(asymptotically tight) upper bound
holds:

|T(Mi )| + |W(Mi )| ∼ 2(d3).

Proof. Consider the following stratification ofMi : take as zero-dimensional strata the
triple-points and cross-caps, as one-dimensional strata the arcs of double-curves in the
complement of the zero-strata and as two-dimensional strata the faces ofMi cut out by
the closure of the double-point arcs. Denote the number ofi -dimensional strata byei .
It is convenient to distinguish bounded arcs, which contain at least one triple-point or
cross-cap, from unbounded ones—denote the number of bounded and unbounded arcs
by eb

1 andeu
1, repectively.

Now eb
1 ≤ 6e0, where equality holds in the worst case where each bounded arc has

infinite length and terminates in a triple-point. For the unbounded arcs we note that each
contains four faces with, in turn, either one or two unbounded arcs in their closure (note,
any face with≥ 3 arcs in its closure must be cut out by bounded arcs), henceeu

1 ≤ e2/2.
Therefore:

e1 = eb
1 + eu

1 ∼ O(e0+ e2).

On the other hand, we have that

e0− e1+ e2 = χ(Mi ) =
∑

j

(−1) j bj (Mi ) ≤
∑

j

bj (Mi ),

and the sum of the Betti numbersbj is, by a result of Milnor [12], at mostO(d3). Hence,
in particular,

e0 = |T(Mi )| + |W(Mi )| ∼ O(d3).

Finally, the zero-set of
∏3

j=1

∏d
k=1(xj −k) inR3 has degree 3d andd3 triple-points. This

example shows that the degree of our bound is exact.

Proof of Proposition(Conclusion). Let l (t) = p+ t · L, whereL = ω (for V = P2)
or L = ω − p (for V = R3\M), be a ray through a cross-capp ∈ Mi = h−1

i (0). The
intersection multiplicity ofl andMi at p is given by the order ofhi ◦ l (t) at t = 0. One
checks that, at a cross-capp, this order is at least two.

So, forω to lie in B20,i , p has to be a cross-cap ofMi andl an asymptotic line. The
latter means thathi ◦ l (t) has order≥ 3 at t = 0 which—at a cross-capp where the
order is automatically≥ 2—corresponds to the single condition

d2(hi ◦ l (t))

dt2

∣∣∣∣
t=0

= d2hi |p(L , L) = 0.
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Hence

B20,i =
⋃

p∈W(Mi )

{ω ∈ V : d2hi |p(L , L) = 0}

is the union of|W(Mi )| ∼ O(d3) quadrics inV, which implies that degB20,i ∼ O(d3).
Forω to lie in B21,r there must exist—not necessarily distinct—surfacesMi , Mj ∈

{M1, . . . ,Mn} such thatp ∈ Mi is a cross-cap and the rayl (t) = p+ t · L has at least
2-point contact withMj at l (λ), λ 6= 0. This boils down to the following (where cl{·}
denotes the closure):

B21,r =
⋃

p∈W(Mi )

cl{ω ∈ V : ∃λ 6= 0 : hj (p+ λ · L) = dhj |p+λ·L(L) = 0}.

The degrees ofhj , dhj (L) ∈ k[λ;ω] are O(d)—hence the unionB21,r of theseO(d3)

algebraic sets has degree at mostO(d5).
A similar argument shows that the set

B22,r =
⋃

p∈W(Mi )

cl{ω ∈ V : ∃λ 6= 0 : hj (p+ λ · L) = hk(p+ λ · L) = 0},

corresponding to bilocal projections in which a cross-cap and a self-intersection curve
appear superimposed, has degree at mostO(d5).

6. Additional Remarks and Open Problems

For the special case ofopaque viewsof “polyhedral terrains”—that is, for graphs of
piecewise linear functions in two variables havingO(n)edges, vertices, and faces—there
is a bound for the number of nodes in the view graph, namelyO(n3 dimV−1+ε), which is
by about a factor ofn sharper than the one for general polyhedra (see Theorems 8.31 and
8.33 of Sharir and Agarwal [18] and their paper [1]). Note that the size of the view graph
for opaque views is less than or equal to the size of the view graph for transparent views
(actually, the former can be obtained from the latter by contracting certain edges). De
Berg et al. [5] have obtained a lower bound ofÄ(n3 dimV−1α(n)) (α being the functional
inverse of Ackermann’s function) for the number of distinct opaque views of polyhedral
terrains, which means that the above upper bound is almost tight (actually, for parallel

projection there is a slightly sharper upper bound ofO(n52c
√

logn) due to de Berg et al.
[5] and Halperin and Sharir [8]). Replacing the piecewise linear functions by piecewise
algebraic ones—but maintaining the restriction that the surfaces are function graphs
with O(n) edges, vertices, and faces—the combinatorial results in [18] can be combined
with our algebraic estimates to obtain anO(n3 dimV−1+εd6 dimV) bound for the nodes
in the view graphs of opaque views of such surfaces. In principal, the view graph of
opaque views of “polyhedral terrains,” and more generally of semialgebraic function
graphs, could be computed by supplementing our algorithm by a postprocessing step
which merges those nodes in the view graph which correspond to distinct transparent but
not to distinct opaque views. The resulting algorithm would have the same asymptotic
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complexity as the algorithm described in this paper and hence would not be optimal
for function graphs (terrains), its time complexity would be by about a factor ofn
too high.

Petitjean [14] has obtained exact formulas, as opposed to asymptotic bounds, for the
degrees of the complexified view bifurcation sets of algebraic surfaces with double-
curves and triple-points using techniques from enumerative geometry. These techniques
also apply to surfaces with additional cross-caps. The transition from the complex to
the real case is, however, very difficult: there exist no nontrivial lower bounds for the
number of connected regions in the complement ofB in terms ofd.

For the case of parallel projections of polyhedra, Gigus et al. [7] have presented an
algorithm that determines the view graphG = (V, E), as well as an explicit description
of a view for each node, inO(|V | log|V |+n4 logn) time. The design of such an “output
sensitive” algorithm, whose running time depends on the actual size|V | of the view
graph, for curved (piecewise smooth) algebraic surfaces is highly desirable but seems
to be a formidable task. Note that, for (piecewise smooth) algebraic surfacesM of high
degreed but small actual size of|V |, the real bifurcation setB of M cuts out only a small
number of regions, but the complexification ofB is nevertheless an algebraic variety of
very high degree (namelyO(nK d6)). It just happens that the high-degree polynomials
at the very end of the view graph computation have relatively fewreal roots—but the
polynomials up to that point could have lots of real roots. Obtaining an output-sensitive
algorithm in such a situation would be of general interest in computational mathematics
and would be a major breakthrough in computational real algebraic geometry.

For polyhedra some recent works have considered the computation of finite-resolution
view graphs (see [19]), which take into account that details of a view that are smaller
than some size-threshold cannot be detected by cameras of limited spatial resolution.
An extension of this work to curved semialgebraic surfaces seems possible but not
very enlightening. Contrary to the claim by some authors (see the paper [6] based on a
panel discussion on aspect graphs in computer vision) that there exist no mathematical
techniques for computing finite-resolution view graphs of curved surfaces, one should
note that the finite-resolution partition of view space of (piecewise smooth) algebraic
surfaces can be defined by Tarski sentences and hence can be effectively computed.
(Recall that Tarski sentences are Boolean formulas with quantifiers and with polynomial
(in-)equalities as predicates.) However, the boundaries of the regions of this partition are
no longer view bifurcation sets (with well-understood topological properties) but rather
unrestricted semialgebraic sets. The exact computation of this finite-resolution partition
might therefore be prohibitive, perhaps one has to be satisfied with approximations.

Appendix. The Geometric Conditions in [17]

Below, Mi = h−1
i (0) is a regular surface andl (t) = p + t · L is a ray of projection,

whereL = ω (for parallel projection) orL = ω − p (for central projection):

(i) Mi has zero Gaussian curvature atp if and only if

Di (p) := det

(
d2hi |p dhi |p
(dhi |p)t 0

)
= 0.
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(ii) A pair of surface normalsdh1|p=l (0), dh2|l (t), t 6= 0, in L⊥ is parallel if and only
if

N‖(p, t, ω) := 〈dh1|p ∧ L ,dh2|l (t)〉 = 0.

(iii) The tangent lines of the crease curveM1 ∩ M2 and of the critical set ofM1 are
parallel atp if and only if

C6‖(p, ω) := 〈dh1|p ∧ dh2|p,d2h1|p(L)〉 = 0.

(iv) The tangent lines of the projections of a pair of crease curvesM1∩M2, M3∩M4

are parallel at their point of intersection if and only if

π
‖
C(p, t, ω) := 〈(dh1|p ∧ dh2|p) ∧ (dh3|l (t) ∧ dh4|l (t)), L〉 = 0, t 6= 0.

(v) Finally, the tangent lines of a fold ofM1 and of a projected crease curveM2∩M3

are parallel at their point of intersection if and only if

π
‖
6C(p, t, ω) := 〈dh1|p,dh2|l (t) ∧ dh3|l (t)〉 = 0, t 6= 0.

References

1. P.K. Agarwal and M. Sharir, On the number of views of polyhedral terrains,Discrete Comput. Geom. 12
(1994), 177–182

2. K.W. Bowyer and C.R. Dyer, Aspect graphs: an introduction and survey of recent results,Internat. J.
Imaging Technol. 2 (1990), 315–328

3. J.S. Carter, J.H. Rieger, and M. Saito, A combinatorial description of knotted surfaces and their isotopies,
Adv. in Math. 127:1 (1997), 1–51

4. B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, A singly exponential stratification scheme for
real semi-algebraic varieties and its applications,Theoret. Comput. Sci. 84 (1991), 77–105

5. M. de Berg, D. Halperin, M. Overmars, and M. van Kreveld, Sparse Arrangements and the Number of
Views of Polyhedral Scenes,Internat. J. Comput. Geom. Appl. 7 (1997), 175–195.

6. O. Faugeras et al., Panel theme: why aspect graphs are not (yet) practical for computer vision,Proc. IEEE
Workshop on Directions Automated CAD-Based Vision, 1991, pp. 98–104

7. Z. Gigus, J. Canny, and R. Seidel, Efficiently computing and representing aspect graphs of polyhedral
objects,IEEE Trans. Pattern Anal. Mach. Intell. 13:6 (1991), 542–551

8. D. Halperin and M. Sharir, New bounds for lower envelopes in three dimensions, with applications to
visibility in terrains,Discrete Comput. Geom. 12 (1994), 313–326

9. D. Hilbert and S. Cohn-Vossen,Anschauliche Geometrie, Springer-Verlag, Berlin, 1932.
10. C.M. Jessop,Quartic Surfaces with Singular Points, Cambridge University Press, Cambridge, 1916.
11. R. Loos, Computing in algebraic extensions, inComputer Algebra: Symbolic and Algebraic Computation,

B. Buchberger, G.E. Collins, and R. Loos, eds., Springer-Verlag, Wien, 1982, pp. 173–187
12. J. Milnor, On the Betti numbers of real varieties,Proc. Amer. Math. Soc. 15 (1964), 275–280
13. B. Mishra,Algorithmic Algebra, Springer-Verlag, New York, 1993.
14. S. Petitjean, The enumerative geometry of projective algebraic surfaces and the complexity of aspect

graphs,Internat. J. Comput. Vision19:3 (1996), 261–287
15. S. Petitjean, J.H. Rieger, and D. Forsyth, Recognizing algebraic surfaces from aspects, inAlgebraic

Surfaces in Computer Vision, J. Ponce, ed., Springer-Verlag, Heidelberg, in press.
16. W. Platinga and C. Dyer, Visibility, occlusion and the aspect graph,Internat. J. Comput. Vision5 (1990),

137–160
17. J.H. Rieger, On the complexity and computation of view graphs of piecewise smooth algebraic surfaces,

Philos. Trans. Roy. Soc. London Ser. A 354 (1996), 1899–1940



Complexity of Exact View Graph Algorithms for Piecewise Smooth Algebraic Surfaces 229

18. M. Sharir and P.K. Agarwal,Davenport–Schinzel Sequences and Their Geometric Applications,
Cambridge University Press, Cambridge, 1995.

19. I. Shimshoni and J. Ponce, Finite-resolution aspect graphs of polyhedral objects,IEEE Trans. Pattern
Anal. Mach. Intell. 19:4 (1997), 315–327

20. J.M. West, The Differential Geometry of the Crosscap, Ph.D. thesis, University of Liverpool, 1995.
21. H. Whitney, The singularities of mappings from smoothn-manifolds into(2n− 1)-space,Ann. of Math.

45 (1944), 247–293

Received July11, 1996,and in revised form July14, 1997.


