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Abstract

All A-simple singularities of map-germs from R
n to R

p , where n � p, of minimal
corank (i.e. of corank n − p + 1) have an M-deformation, that is a deformation in
which the maximal numbers of isolated stable singular points are simultaneously
present in the discriminant.

1. Introduction

We study real deformations of map-germs from R
n into R

p , where n � p, for which
the maximal numbers of isolated stable singular points are simultaneously present in
the discriminant which we call M-deformations for short (M as in maximal), further-
more we call the maximal numbers of isolated stable singularities 0-stable invariants.
(Notice, of course, that the numbers of isolated stable singular points in a real deform-
ation of a map-germ are no greater than the corresponding numbers appearing in a
stabilization of the complexified germ, and for an M-deformation the corresponding
numbers are equal.) For map-germs of target dimension greater than the source di-
mension we replace discriminant by image in the definition of a M-deformation. This
terminology is analogous to the concept of a M-morsification of a function-germ,
which, for example, exist for singularities of type Ak and Dk [2, 5]), and also for
those of type E6, E7 and E8. For map-germs very little is known about the exist-
ence of M-deformations beyond the classical result by A’Campo [1] and Gusein–Zade
[8] that plane curve-germs always have M-deformations, i.e. deformations with δ
real double-points (notice that the δ-number is the only 0-stable invariant in this
case). For map-germs R

n → R
p , where n < p, there is also the notion of a good

real perturbation, due to Mond, for which the homology of the image of a stabiliza-
tion of a given germ coincides with that of its complexification (which is analogous
to that of an M -variety X in real algebraic geometry for which b�(XR) = b�(XC),
where XK is the set of K-points of X and b� the sum of the Betti numbers, see
e.g. [11]). Again there is an analogous definition for n � p with discriminant in place
of image. For plane curve-germs the concept of a good real perturbation coincides
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with that of an M-deformation, but for map-germs of higher source dimension such
good perturbations exist only for a small class of map-germs – e.g. for germs from
R
2 to R

3 there is only one series of A-simple corank-1 mono-germs having good real
perturbations [12]. On the other hand, good perturbations are known to exist for all
singular map-germs from R

n to R
p of Ae-codimension 1 and minimal corank (i.e. of

corank max(1, n − p + 1)), see [4] and [10].
The main result of this paper is that all A-simple singularities of map-germs

from R
n to R

p , where n � p, of minimal corank (i.e. of corank n − p + 1) have
an M-deformation. The proof is based on the following property (�): all A-simple
singularities f of minimal corank can be deformed into a germ of lower codimension
whose 0-stable invariants differ from those of f by at most one – one can then
inductively split-off real stable singular points from 0 one by one. As a corollary we
also get lower bounds for the Ae-codimension of f in terms of its 0-stable invariants.
The above property does not hold for germs of non-minimal corank nor for germs of
positive A-modality. The hypothesis of minimal corank is necessary for the existence
of M-deformations (below we give an example of an A-simple corank-2 germ from
the plane to the plane that does not have an M-deformation, and that violates the
above property). At present we have no example of a germ of minimal corank and
positive A-modality without an M-deformation, but there are A-unimodal germs for
which the above property (�) does not hold.
Finally, looking at the existing classifications of A-simple corank-1 germs from R

n

toR
p , where n < p, one verifies that these haveM-deformations. Hence it is reasonable

to conjecture that the existence of M-deformations holds for A-simple singularities
of minimal corank for any pair of source and target dimensions.
The plan of this paper is as follows. In Section 2 we introduce some notation and

state the main result and in Section 3 we briefly recall from [18] the definition of
certainmap-germsGk (s,n ):Kn+s−1 → K

n+s−1 associatedwith f :Kn → K
n (here k(s, n)

denotes a partition of n with s summands, and K = R or C) whose local multiplicity
gives the 0-stable invariants up to an overcount factor. Section 4 contains the proof
of the main result and Section 5 gives lower bounds on the Ae-codimension in terms
of the 0-stable invariants and discusses some empirical evidence for the existence of
M-deformations for A-simple corank-1 germs f :Rn → R

p , for n < p.

2. Statement of main result and some notation

Any A-simple smooth map-germ f :Rm , 0→ R
n , 0, where m � n, of rank n − 1 is

given by the pre-normal form

(x, y, z) �−→ (x, g(x, y) +Q(z)),

where (x, y, z) ∈ R
n−1 × R × R

m−n , Q(z) =
∑

i εiz
2
i (εi = ±1) and where (x, y) �→

(x, g(x, y)) is an A-simple equidimensional corank-1 germ (see Lemma 4·1). Let f̃ =
(f̃1, . . . , f̃s):Rm , S → R

n , f̃ (S)� q, f̃i(x, yi) = (x, g̃i(x, yi) +Qi(z)), i = 1, . . . , s � |S|,
be an s-germ appearing in a deformation of f (here S is a finite set of source points
being mapped to the point q in the target). The rank n − 1 K-classes of germs
R

m , 0 → R
n , 0 are those of Ak , with representatives (x, yk+1 + Q(z)), and the K-

classes of s-germs A(k1,...,ks ) have an Aki
-singularity at the ith source point. The

stable rank n−1 multi-germs are those transverse to their K-class A(k1,...,ks ), and the
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isolated stable (or 0-stable) singularities amongst these are those with

∑s
i=1 ki =n.

Let k(s, n)� (k1, . . . , ks) be such a partition of n with s summands.
For equidimensional germs f :Cn , 0→ C

n , 0 the number of isolated stable Ak (s,n )-
points in a generic deformation of f , denoted by rk (s,n )(f ), can be calculated by
dividing the local multiplicity of a certain map-germ Gk (s,n ):Cn+s−1, 0 → C

n+s−1 by
some overcount factor (see [18] and Section 3). For rank n−1 germs f :Cm , 0→ C

n , 0,
where m > n, of the form (x, g(x, y) + Q(z)) the invariants rk (s,n )(f ) can simply be
calculated from the associated equidimensional germ (x, g(x, y)).
For real germs f the invariants rk (s,n )(f ) are defined by complexifying, but clearly

the above geometric interpretation no longer holds: the number rR

k (s,n )(ft) of real
Ak (s,n )-points in a deformation ft of f now depends on the choice of deformation.
One only has the obvious inequality rR

k (s,n )(ft) � rk (s,n )(f ).
We call a real deformation ft of f an M-deformation, if the maximal numbers

rk (s,n )(f ) of 0-stable singularities (for all partitions k(s, n) of n) are simultaneously
present in the discriminant of ft .
The main result on the existence of M-deformations in the present paper is the

following:

Theorem 2·1. All A-simple rank n − 1 germs f :Rm , 0→ R
n , 0, where m � n, have

an M-deformation.

Remark 2·2. The condition on the rank is necessary: A-simple germs of higher
corank do in general not have an M-deformation, as the following example shows. For
the corank-2 germ f = (x2− y2 +x3, xy) the invariants r(2)(f ) = 3 and r(1,1)(f ) = 2 are
the (complex) cusp and double-fold numbers, respectively. But any real stabilization
of f has 3 cusps and no double-fold (see [19]).

We now fix some notation. Let Cn denote the local ring of smooth (or complex-
analytic) function germs f :Kn , 0→ K, 0 andMn its maximal ideal. For the groups
A and K (of left-right and of contact equivalence, respectively) acting on the space
of smooth map-germs and for the tangent spaces to the A- and K-orbits we use the
usual notation, such as TA · f = tf (Mn · θn ) + wf (Mp · θp ) and TK · f = tf (Mn ·
θn ) + f �Mp · θf (a basic reference for these concepts is the survey on determinacy
[21] by Wall). For equidimensional map-germs f :Kn , 0 → K

n , 0 of corank 1 we use
source coordinates (x, y) = (x1, . . . , xn−1, y) such that f (x, y) = (x, g(x, y)), and target
coordinates (X1, . . . , Xn ). In describing elements of TA · f we sometimes use the
shorter notation ei for the target and source vector fields ∂/∂Xi and ∂/∂xi (where
xn = y).

3. Defining equations of the 0-stable invariants

In view of Lemma 4·1 in this section we consider equidimensional corank-1 germs
f :Kn , 0→ K

n , 0 of the form f (x, y) = (x, g(x, y)). For such map-germs one can embed
the space of s-fold points in the source (whose f -images are a common point in the
target) in K

n+s−1, with coordinates (x, y1, . . . , ys) = (x1, . . . , xn−1, y1, . . . , ys). Recall
that Ak (s,m ) � A(k1,...,ks ), where m �

∑s
i=1 ki , denotes the K-class of s-germs having

an Aki
-singularity at the ith source point. In [7, 17, 18] the closures of the sets

A(k1,...,ks ) in multi-jet space J�
s , � �

∑s
i=1(ki + 1), were explicitly defined by iteration

for any s and m � n, and it was shown that these sets are smooth submanifolds of



336 J. H. Rieger and M. A. S. Ruas

codimension
∑s

i=1(ki)+s−1. (Roughly speaking, the conditions for anAkj
singularity

at the jth source point, with f -image some given point in the target, are reduced
modulo the corresponding conditions at the source points 1 to j−1 and then divided
by a suitable power of yj − yj−1.) Pulling back the ideal defining the closures of these
sets by the multi-jet extension of f we get an ideal (j�

sf )
�(I(Āk (s,n ))) in Cn+s−1, and

for m = n the generators of this ideal define an equidimensional map-germ

Gk (s,n ) = (G1, . . . , Gn+s−1):Kn+s−1, 0→ K
n+s−1

whose local multiplicity mGk (s , n ) (0) � dimK Cn+s−1/G�
k (s,n )Mn+s−1 is equal to the

number rk (s,n )(f ) of complex Ak (s,n )-points appearing in a stabilization of f times an
overcount factor c (c is equal to the number of permutations mapping source points
of type Aki

to source points of the same type).
It will turn out (see below) that we need the defining equations of the sets Āk (s,n )

only for s = 1 and 2, hence we specialize the definitions in [17, 18] to these particular
cases. Set g(i) � ∂ig/∂yi , then Ā(n ) � {g(1) = . . . g(n ) = 0}. For s = 2 we first apply
a linear origin-preserving coordinate change L(x, y1, y2) = (x, y1, y2 − y1)� (x, y, ε),
and let g(i)1 � g(i). Setting

g(0)2 �
∑

α�k1+1

g(α )1 εα−k1−1/α!, g(i)2 � ∂ig(0)2 /∂εi, i � 1,

we define
Ā(k1,n−k1) �

{
g(1)1 = · · · = g(k1)1 = g(0)2 = · · · = g(n−k1)

2 = 0
}

.

Notice that for even n the overcount factor c in r(n/2,n/2)(f ) = c−1 · mG (n / 2, n / 2)
(0) is 2.

For the other 0-stable invariants in the cases s = 1, 2 it is one.
The following facts will be useful.

Remark 3·1.
(i) Given a pair of Ae-equivalent, equidimensional corank-1 germs f and f ′, the
corresponding pairs of germs Gk (s,n ) and G′

k (s,n ) are K-equivalent (see [18,
lemma 2·3]).

(ii) rk (s,n )(f ) = 0 for n + s > mf (0), where mf (0) denotes the local multiplicity of
f at the origin (this follows from the “additivity of the local multiplicities on
the diagonal” in the recognition conditions for Āk (s,n ), see [17, 18]). This fact,
together with the observation that theA-modality of germs withmf (0) � n+3
is positive (Lemma 4·4 below), implies that we only have to consider 0-stable
invariants with s = 1, 2.

In the cases k(s, n), where rk (s,n )(f ) is equal to the local multiplicity of Gk (s,n ), the
following will be important in our construction of M-deformations of f .

Lemma 3·2. Suppose rk (s,n )(f ) = mGk (s , n ) (0)<∞ and that there is a f ′ such that
[f ]→ [f ′] and rk (s,n )(f ) = rk (s,n )(f ′) + 1, where f and f ′ are mono-germs at the origin.
Then there is an origin preserving deformation, ft , from f to f ′ and a neighbourhood
in R

n+s−1 of 0 in which the s-germ of this deformation has a real Ak (s,n )-point q � 0 of
multiplicity one (recall that q = (x, y1, . . . , ys)). Furthermore, formf (0)−mf ′(0)<n+ s
the images f ′(x, y1) = · · · = f ′(x, ys) and f ′(0) are distinct.

Proof. Let F = (u, fu ) be a polynomial A-versal unfolding of f = f0 on d paramet-
ers. The closure of the [f ′] stratum in the base R

d of F is a semi-algebraic set and, by



M-deformations of A-simple Σn−p+1-germs 337
the curve selection lemma, contains a curve given by the image of a Nash mapping
(which is continuous and even C∞) t �→ u(t), t ∈ [0, T ), such that the germ of fu (t)

at 0 is A-equivalent to f ′ for all t∈ (0, T ). The deformation Gt
k (s,n ):[0, T )×R

n+s−1 →
R

n+s−1 ofGk (s,n ) = G0
k (s,n ) induced by fu (t) is polynomial in (Q1, . . . , Qn+s−1) ∈ K

n+s−1

(where K = R or C and C∞ in t. Choose a representative f ∈ R[x, y]n , whose germ
at 0 belongs to [f ], from a Zariski open set of degree d polynomial maps (where d
is sufficiently larger than the determinacy degree of the germ of f at 0) such that
G−1

k (s,n )(0) has outside 0 only isolated points (real or complex) q̃1, . . . , q̃k of multi-
plicity one (and we know that 0 ∈ G−1

k (s,n )(0) has multiplicity rk (s,n )(f )<∞). Let
πi(Q1, . . . , Qn+s−1) =Qi be the projection from C

n+s−1 onto the ith coordinate, by a
linear coordinate change we can suppose that πi(q̃j )� 0 and πi(q̃j )� πi(q̃l), for all
i, j and l � j. By elimination theory, πi((Gt

k (s,n ))
−1(0)) ⊂ C is given by the roots

of a polynomial g ∈ R[Qi], whose coefficients are real C∞-functions in t. By the
continuity of the roots (as functions of the coefficients) there are, for small enough t,
k simple roots πi(q̃t

j ), j =1, . . . , k, with πi(q̃0j ) =πi(q̃j )�0. And, for geometric reasons,
we know that πi(q) and πi(0) are roots of multiplicity one and rk (s,n )(f )− 1 (tending
to 0 for t → 0), that are closer to 0 than any of the πi(q̃t

j ) (for small enough t). Hence
qi � πi(q) ∈ R, because qi cannot be the complex conjugate of any other root of
g ∈ R[Qi] for any i, hence q = (q1, . . . , qn+s−1) ∈ R

n+s−1. The last statement of the
lemma is clear: if the fibre over f ′(0) contains, in addition to 0, extra Aki

points
(x, yi), forming an Ak (s,n ) singularity, that tend to 0 as f ′ degenerates to f then
mf (0)− mf ′(0) � n + s.

The strategy for showing the existence of a M-deformation is then the following.
Suppose that for every germ f there is some f ′ of lower codimension such that
all 0-stable invariants of f and f ′ differ by at most one (and also suppose that
mf (0) − mf ′(0)� n so that the last statement of the lemma holds for all s – in fact,
mf (0)−mf ′(0) will always be 0 or 1). First, consider the 0-stable invariants for which
rk (s,n )(f ) =mGk (s , n ) (0) (for s � 2, this holds for all k(s, n)�(n/2, n/2)). If rk (s,n )(f ) −
rk (s,n )(f ′) = 1 then 0 is an Ak (s,n ) point of multiplicity rk (s,n )(f ′) = rk (s,n )(f ) − 1 and
we have another nearby Ak (s,n ) point q � 0 of multiplicity 1, which is also real (by
the lemma). On the other hand, if rk (s,n )(f )− rk (s,n )(f ′) = 0 then 0 is an Ak (s,n ) point
of f ′ of multiplicity rk (s,n )(f ). Continuing in this way, we decrease the codimension
of the germ at 0 at each step (and either keep the Ak (s,n )-multiplicity at 0 the same
or decrease it by one and at the same time split-off from 0 one real Ak (s,n ) point)
until the germ at 0 is a stable Ak (s,n ) point of multiplicity one – at this stage there
are rk (s,n )(f )− 1 extra stable Ak (s,n ) points outside 0. Finally, for k(s, n) = (n/2, n/2)
we have to be more careful, because the multiplicity of G(n/2,n/2) is twice the number
of A(n/2,n/2) points and the above lemma does not apply. In this case f can have
an A(n/2,n/2) point of multiplicity r at 0 and f ′ one of multiplicity r − 1, but the
A(n/2,n/2) point q of multiplicity one that splits-off 0 (that corresponds to a pair
of points of (Gt

(n/2,n/2))
−1(0)) may not be real. But the argument in the conclusion of

the proof of Theorem 4·3 will show that q is real for some suitable choice of sign of
the deformation parameter t.

Remark 3·3. This strategy for obtaining M-deformations and Lemma 3·2 hold for
all k(s, n) for which rk (s,n )(f ) = mGk (s , n ) (0) (see section 2 of [18] for the definition of
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the maps Gk (s,n ) for general s, in the present paper we only need the case s � 2).
They are also valid for 0-stable invariants of corank-1 germs in dimensions n < p
corresponding to partitions k(s, m) (where 0 summands are allowed) satisfying the
equality (m + s − 1)(p − n + 1) = (n + s − 1) for which rk (s,m )(f ) =mGk (s , m ) (0) (see
section 3 of [18]). This is useful in verifying that A-simple corank-1 germs from R

3

to R
4 have M-deformations (see the concluding remarks below).

4. M-deformations and A-simplicity
We begin with an outline of the proof of Theorem 2·1. The key property ofA-simple

singularities of minimal corank, from which a M-deformation can then be obtained
inductively (see discussion above), is that such germs f can be deformed into a germ
f ′ of lower codimension whose 0-stable invariants differ from f by at most one. The
proof of this property (�) consists of the following main steps:

(i) reduction to the equidimensional case R
n → R

n ;
(ii) for n � 3 there are no A-simple orbits of local multiplicity � n + 3;
(iii) germs f of local multiplicity n+1 have rk (1,n )(f ) = r(n )(f ) as the only non-zero 0-

stable invariant, and positive K-modality of G(n ) implies positive A-modality
of f . Property (�) then follows from the analogous property for the local
multiplicities of K-simple equidimensional map-germs;

(iv) germs f of local multiplicity n + 2 have rk (s,n )(f ), where s=1, 2, as the only
non-zero 0-stable invariants. In this case property (�) follows from a partial
classification ofA-simple germs listed in Lemma 4·10 (we do not know whether
all the germs in this list are A-simple, but any A-simple germ of multiplicity
n + 2 is equivalent to some germ in this list). This partial classification is the
most unpleasant part of the proof. (Notice that the proofs of the Lemmas 4·9
and 4·10merely describe the high-level structure and the cases to be considered,
but omit all the routine details, which just require some care due to the fact
that the dimension n is not fixed.)

We begin with the reduction to the equidimensional case.

Lemma 4·1. Any A-simple smooth map-germ f :Rm , 0 → R
n , 0, where m � n, of

rank n − 1 is given by the pre-normal form

(x, y, z) �−→ (x, g(x, y) +Q(z)),

where (x, y, z) ∈ R
n−1 × R × R

m−n , Q(z) =
∑

i εiz
2
i (εi = ± 1) and where (x, y) �→

(x, g(x, y)) is an A-simple equidimensional corank-1 germ.

Proof. The argument is similar to the one for n = 2 (see lemmas 1·1 and 1·2 in [19]).
After a coordinate change we can assume that f is for some r ∈ {0, . . . , m − n + 1}
given by

h =

(
x1, . . . , xn−1, g(x1, . . . , xn−1, y1, . . . , yr ) +

m−n−r+1∑
i=1

εiz
2
i

)
,

where g(x, 0) = 0 and g(0, . . . , 0, y1, . . . , yr ) ∈ M3
r . Two such germs h= (x, g, (x, y) +

Q(z)) and h′ = (x, g′(x, y) + Q(z)) are A-equivalent if and only if the corresponding
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germs (x, g(x, y)) and (x, g′(x, y)) are A-equivalent. We claim that for r � 2 there are
no simple A-orbits over the 2-jet of (x, g(x, y)), which for r = 2 is A2-equivalent to

(x, a1x1y1 + · · · + an−1xn−1y1 + b1x1y2 + · · · + bn−1xn−1y2).

The least degenerate A2-orbit, corresponding to ai � 0 and aibj � aj bi (for some i
and j � i), has the representative (taking i = 1, j = 2)

σ � (x, x1y1 + x2y2).

A complete 3-transversal for σ is given by

t �
(
0, ay31 + by21y2 + cy1y

2
2 + dy32 + ex3y

2
1 + · · · + fxn−1y

2
2

)
.

Now we can argue as in [19, lemma 1·2] to show that the subspaceK{yi
1y

j
2 ·en : i+j =

3} of TA3 · (σ + t) is foliated by (at least) a 1-parameter family of orbits. Notice that
the more degenerate A2-orbits and the orbits corresponding to r > 2 are all adjacent
to TA2 · σ, which implies the claim.

Remark 4·2. Notice that the discriminants of the germs (x, g(x, y) + Q(z)) and
(x, g(x, y)) coincide.

From now on we will therefore consider equidimensional germs of corank-1. For
such germs we have the following result.

Theorem 4·3. AllA-simple corank-1 germs f :Rn , 0→R
n , 0 have an M-deformation.

For n=2 all real types of stabilizations of all simple corank-1 germs are known
(see [16]) and amongst these there is always an M-deformation (the result also holds
for functions of one variable, n = 1), hence we can concentrate on n � 3. The theorem
will follow from Lemmas 4·4, 4·7–4·11 below.

Lemma 4·4. For n � 3, all A-orbits inside K(x1, . . . , xn−1, y
�n+3) are at least unim-

odal.

Lemma 4·4 will follow from Lemma 4·5 below in which we prove that K-orbits
of local multiplicity � n + 3 do not contain an open A-orbit, that is one for which
TA · f = TK · f. It then follows that K · f contains a Zariski open subset foliated by
A-orbits of minimal codimension c > 0, hence all its A-orbits are non-simple.

Lemma 4·5. Let f :Kn , 0→ K
n , 0 be a corank 1 A-finitely determined germ. Suppose

that the A-orbit of f is open in its K-orbit. Then mf (0) � n + 2.

We shall need the following condition for the openess of an A-orbit within its
K-orbit. A proof of this result first appeared in [20, theorem 5·1].

Proposition 4·6. ([20, Theorem 5·1]). Let f :Kn , 0 → K
p , 0 be a K-finitely determ-

ined germ and denote by {v1, v2, . . . , vr} a basis for

N �
θf

TAe · f + f∗Mp · θf

.

The A-orbit of f is open in its K-orbit if and only if fivj ∈ TA · f, i = 1, . . . , p; j =
1, . . . , r (Mod f∗M2

p · θf ).
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Proof (sketch). The K-finiteness of f and the condition N = K{v1, . . . , vr} imply,
using the Preparation theorem, that θf /TAe · f is a finite Cp -module via f∗. Then
θf = TAe · f + f∗Cp{v1, . . . , vr} (i).
From the hypothesis fivj ∈ TA · f we then get f∗Mp · vj ⊂ TA · f (ii), which

together with (i) implies that θf = TAe · f +K{v1, . . . , vr}. Multiplication by f∗Mp ,
and using (ii), then gives f∗Mp ·θf ⊂ TA·f , hence TA·f = TK·f . And the converse
is obvious.

Proof of Lemma 4·5. When mf (0) � n + 1, the only map-germs f :Kn , 0 → K
n , 0

with the property that theA-orbit is open in its K-orbit are the infinitesimally stable
ones. Then, we can assume that mf (0) = n + l, l � 2.
Let f (x, y) = (x, g(x, y)), where x = (x1, . . . , xn−1), and g(x, y) = yn+l + φ1(x)y +

· · · + φn−1y
n−1 +

∑n+l−2
i=n φi(x)yi.

The hypothesis that the A-orbit of f is open in the K-orbit implies that rank
dφ(0) = n−1, where φ:Kn−1, 0→ K

n+l−2, 0 is defined by φ(x) = (φ1(x), . . . , φn+l−2(x))
(note that this rank is an A-invariant of f ). It also follows that after changing
coordinates, we can write f in the form:

(x, g(x, y)) =

(
x, yn+l + x1y + · · · + xn−1y

n−1 +
n+l−2∑

i=n

φi(x)yi

)
.

Moreover, from Proposition 4·6 it follows that the n(n + l − 2) + 1 elements (0, yn+l),
(0, g(x, y)yj ), (0, xiy

j ), i = 1, . . . , n − 1 and j = 1, . . . , n + l − 2, must be in TA · f +
f∗M2

n · θf (with p = n). The equations relating these elements are:

wf (Xn · en ) + f∗M2
n · θf = 0, (ModTA · f )

tf (yj · en ) + f∗M2
n · θf = 0, j = 1, . . . , n + l − 1 (ModTA · f )

tf (xi · ej ) + f∗M2
n · θf = 0, i = 1, . . . , n − 1, j = 1, . . . , n − 1, (ModTA · f )

tf (g · ej ) + f∗M2
n · θf = 0, j = 1, . . . , n − 1, (ModTA · f )

This system has n(n + l − 2) + 1 unknowns and n2 + l equations. Hence we must
have n2 + l � n(n + l − 2) + 1, which holds if and only if l � (n/(n − 1)) + 1. Then,
when n � 3, it follows that l � 2.

Formf (0) � n all invariants rk (s,n )(f ) are zero, hence we have to consider the cases
mf (0) = n + 1 and n + 2.

4·1. The case mf (0) = n + 1

It is sufficient to consider germs (see [15], proposition 4·8)

f = (x, yn+1 + P1(x)y + · · · + Pn−1(x)yn−1),

and m = n implies s = 1, hence G(n ), which is K-equivalent to

P � (P1(x), . . . , Pn−1(x)),

is the only relevant germ here.
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Lemma 4·7. If G(n ) is not K-simple then f is not A-simple.

Proof. The hypothesis implies that there exists a 1-parameter deformation P t �
(P t
1 (x), . . . , P

t
n−1(x)) of P = P 0 meeting an infinite number of distinctK-orbits. Hence

ft � (x, yn+1 +
∑n−1

i=1 P t
i (x)y

i) is a deformation of f = f0 meeting an infinite number
of A-orbits (by Remark 3·1(i)).

Note: ifG(n ) andG′
(n ) correspond to f and f ′, respectively, then the above argument

shows that [G(n )] → [G′
(n )] implies [f ] → [f ′] (i.e., for corank-1 germs of local

multiplicity n + 1, adjacency of K-orbits implies that of A-orbits). The following
claim now implies, by downward induction on K-codimension of P , that all A-simple
germs of local multiplicity n+1 have M-deformations, because r(n )(f ) = mP (0) (notice
that a K-codimension decreasing deformation P t of P = P 0 induces a deformation
ft of f = f 0 that decreases the A-codimension, because the A-types of ft , t� 0, and
f differ by Remark 3·1(i)).

Lemma 4·8. Let P :Rn−1, 0→ R
n−1, 0 be a K-simple germ then there exists a germ P ′

of lower K-codimension, to which P is K-adjacent to, such that mP (0)− mP ′(0) � 1.

Proof. This uses the classification of K-simple equidimensional real germs. For
complex-analytic germ the classification of theK-simple orbits and the description of
their adjacencies is due to Giusti [6]. In the real case there is no complete published
reference for the classification of the K-simple equidimensional germs and their
adjacencies, but at least the classification is well-known (the preprint version of [19]
reviews the published and unpublished work on this subject, comparing notation for
real and complex orbits and giving some partial adjacencies over the reals).
Here is the real classification and some partial adjacencies X → Y with the

property that the local multiplicities of X and Y differ by at most one (this gives the
desired result). For real orbitsX having the same normal form as the complex ones we
use the notation in [6], or we use X± if a complex orbit X simply has two real forms
distinguished by different signs. This yieldsAk = (x, yk+1),G5 = (x2, y3),G7 = (x2, y4),
I2k−1 = (x2 + y3, yk ) (k � 4), I2k+2 = (x2 + y3, xyk ) (k � 3) and H±

k = (x2 ± yk−3, xy2),
where ± agree for even k � 6. The lower indices in Giusti’s notation are Milnor
numbers, to get the local multiplicities we simply have to add one (all the germs P
are weighted homogeneous, hence µ(P ) = mP (0) − 1). Finally, for Giusti’s complex
orbits Fk+l−1 we now have 3 real forms. Here we use Mather’s notation (where lower
indices don’t denote Milnor numbers!): Ik,l = (xy, xk + yl) of local multiplicity k + l
(2 � k � l), IIk,l = (xy, xk − yl) of local multiplicity k + l (2 � k � l and k, l both
even), and IVk = (x2 + y2, xk ) of local multiplicity 2k (k � 3). For the purpose of
this lemma the following adjacencies are then sufficient: Ak → Ak−1, Ik,l → Ik,l−1,
I2,2 → A3, IIk,l → Ik,l−1, II2,2 → A2, IVk → A2k−1, G5 → I3,3, G7 → H+

7 , Il → Il−1,
I7 → H+

6 , H
±
k → H+

k−1 and H+
6 → I3,4.

4·2. The case mf (0) = n + 2

Here we consider the prenormal form

f = (x, yn+2 + P1(x)y + · · · + Pn (x)yn ),

and m = n implies s = 1 or 2. Hence G(n ) and G(n−l,l) (l = 1, . . . , [n/2]) are the only
germs corresponding to non-zero 0-stable invariants of f .
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Lemma 4·9. Any A-simple germ of local multiplicity n + 2 has one of the following
prenormal forms:

fn = (x, yn+2 + x1y + · · · + xn−1y
n−1),

or

fn−1 = (x, yn+2 + x1y + · · · + xn−2y
n−2 + Pn−1(xn−1)yn−1 + xn−1y

n ),

where Pn−1 belongs to the square of the maximal ideal.

Proof. We divide the proof in several steps.

Step 1. Any A-simple germ of local multiplicity n + 2 has the prenormal form

fj = (x, yn+2 + x1y + · · · + xj−1y
j−1 + Pjy

j + xjy
j+1 + · · · + xn−1y

n ),

where Pj � Pj (xj , . . . , xn−1), 1 � j � n, is in the square of the maximal ideal.
Consider the prenormal form f = (x, yn+2 + P1(x)y + . . . + Pn (x)yn ): suppose the

differential of (P1, . . . , Pn ) has rank r � n − 2 at the origin. By a right change in the
xi we can assume that r of the Pj are given by x1, . . . , xr . All such f are adjacent to
some germ of the type

(x, yn+2 + x1y + · · · + xry
r + Pr+1y

r+1 + · · · + Pnyn ),

where the Pi are in the square of the maximal ideal and only depend on xr+1, . . . , xn−1
(notice: if f is not of this type and some Pj , j < r + 1, of f is in the square of the
maximal ideal and xj appears linearly in some Pi , i > r, then we can deform the last
component of f by t ·xjy

j ; for t� 0 we can then reduce f to the desired form). Hence
assume that f is of this type. We can even assume that f is the “best possible” germ
of this type, namely that r = n−2 and Pn−1, Pn ∈ 〈x2n−1〉 (in the sense that the other
germs of this type are adjacent to one of this form). Then let f ′:Rn−1, 0 → R

n−1, 0
be the restriction of f to xn−1 = 0, and consider θf ′ ⊂ θf as a linear subspace. Clearly

TA · f ′ = (TA · f + 〈xn−1〉θf ) � θf ′ ,

hence f has a modulus, because f ′ has one (by the proof of Lemma 4·4).
Hence, for simple germs f , the differential of (P1, . . . , Pn ) has rank n − 1 at the

origin. Let Pj be the first P� such that the rank of the differential of (P1, . . . , P�), for
increasing � � 1, is less than �. We then claim that by direct coordinate changes we
can assume that Pi = xi , for i < j, Pj = Pj (xj , . . . , xn−1) ∈ M2

n−j , and Pi+1 = xi , for
i � j, as required.
(Sketch of proof of this claim: the rank of the differential of (P1, . . . , Pj−1) is j − 1,

by permuting the xi we can assume that (∂P�/∂xi), 1 � i, � � j − 1, has rank
j − 1. By a right coordinate change h = (k(x), y) and a subsequent left coordinate
change (k−1(X1, . . . , Xn−1), Xn ) we get Pi = xi , for i < j, without changing the first
n − 1 component functions of f . Now we can remove terms xih(x), i < j, from Pj

by successive coordinate changes, for example y �→ y − i−1h(x)yj−i+1 removes xih(x)
from Pj (but this introduces higher order terms in the Pi = xi , i < j, as well as
in Pj , which can be pushed to higher and higher order by subsequent coordinate
changes), hence (P1, . . . , Pj ) = (x1, . . . , xj−1, Pj (xj , . . . , xn−1)) with Pj in the square
of the maximal ideal. In the same way one can also remove xi , i < j, from the
P� , � > j, so that (Pj , . . . , Pn ) depends only on xj , . . . , xn−1. From the facts that
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the differential of (P1, . . . , Pn ) has rank n − 1 and that Pj is in the square of the
maximal ideal it then follows that (∂P�/∂xi), j � i � n − 1, j + 1 � � � n has
maximal rank, and that Pi+1 = xi , i � j, after some right change of the form
h = (x1, . . . , xj−1, k(xj , . . . , xn−1), y), where k ∈ Diff(n − j), and a subsequent left
coordinate change (X1, . . . , Xj−1, k

−1(Xj , . . . , Xn−1), Xn ).)

Step 2. Any germ of type fj is non-simple if all germs of type fj+1 are non-simple.
We will show that any A-orbit in K(x, yn+2) of type fj is adjacent to some orbit of
type fj+1. Take a deformation of

fj = (x, yn+2 + x1y + · · · + xly
l + P (xl+1, . . . , xn−1)yl+1

+xl+2y
l+2 + · · · + xn−1y

n−1 + xl+1y
n ),

with l = j − 1 and P in the square of the maximal ideal (recall prenormal form from
Step 1), by t.(0, xl+2y

l+1). For non-zero t we apply successive coordinate changes

xl−2 �→ t−1(xl−2 − Q(xl+1, . . . , xn−1)), Q ∈ M2

xl−2 �−→ xl−2 − t−1xl+2y, etc.

and obtain

(x, yn+2 + x1y + · · · + xly
l + xl+2y

l+1 +Q′(xl+1, . . . , xn−1)yl+2

+xl+3y
l+3 + · · · + xn−1y

n−1 + xl+1y
n ),

where Q′ ∈ M2, which is of type fl+2 = fj+1.

Step 3. All A-orbits in K(x, yn+2) of type fn−2 have modality at least one.
Set s � (x, x1y + · · · + xn−3y

n−3) and consider a general n-jet

f = s +
(
0,

(
ax2n−2 + bxn−2xn−1 + cx2n−1

)
yn−2 + (dxn−2 + exn−1)yn−1)

over s. We have the following three cases:

Case 1. d = e = 0: not all xi appear linearly in some Pj , where (x, yn+2 +
∑

Pj (x)yj ).
This leads to non-simple orbits (see Step 1).

Case 2. e and d are not both 0, hence we can take (after a suitable coordinate change)
e = 1, d = 0 in the n-jet f above. The least degenerateAn -orbit is then given by a� 0
(for a = 0 see Case 3. below) with representative f = s + (0, x2n−2y

n−2 + xn−1y
n−1). A

complete (n + 1)-transversal for this f is given by (0, a′xn−2y
n + b′yn+1).

There are three cases to be considered (at the (n + 1)-jet level):

(2·1) b′ � 0: leads to A-orbits in K(x, yn+1), see earlier Section 4·1.
(2·2) b′ = 0, a′ � 0: s′ ∼ s + (0, x2n−2y

n−2 + xn−1y
n−1 + xn−2y

n ).
(2·3) a′ = b′ = 0: (n + 1)-jet f .

We have to consider the last two cases further.

Case 2·2: an (n + 2)-transversal in this case is (0, ayn+2). For f � s′ + (0, ayn+2)
we have 3 generators for the a-subspace of TAn+1 · f (suppressing terms that are
obviously in TAn+1 · f ):

wf (Xn · en ) =
(
0, x2n−2y

n−2 + xn−2y
n + ayn+2

)
,
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tf (y · en ) =
(
0, (n − 2)x2n−2yn−2 + nxn−2y

n + (n + 2)ayn+2
)
,

tf (xn−2 · en−2) =
(
0, 2x2n−2 + xn−2y

n
)
.

The resulting 3 by 3 matrix has rank < 3, hence a is a modulus:

f =
(
x, ayn+2 + x1y + · · · + xn−3y

n−3 + x2n−2y
n−2 + xn−1y

n−1 + xn−2y
n
)
.

The least degenerate orbit in Case 2·2 is therefore non-simple.
Case 2·3: the germs with (n + 1)-jet

f = s +
(
0, x2n−2y

n−2 + xn−1y
n−1)

are adjacent to those in Case 2·2, hence non-simple.
This concludes 2·1 to 2·3 in Case 2. We now come to the last case concerning the

general n-jet f at the beginning of Step 3.

Case 3. e = 1 , a = d = 0: for b� 0 the n-jet

f = s + (0, (bxn−2 + cxn−1)xn−1y
n−2 + xn−1y

n−1)

is equivalent to s′ � s+(0, xn−2xn−1y
n−2 +xn−1y

n−1). A complete (n+1)-transversal
for s′ is given by

t �
(
0, a′x3n−2y

n−2 + b′xn−2y
n + c′yn+1

)
.

Setting f � s′ + t, the subspace of TAn+1 · f spanned by
xn−2xn−1y

n−2, x3n−2y
n−2, xn−1y

n−1, yn+1, x2n−2y
n−1, xn−2y

n

in the en -component has the following generators

tf (xn−1 · en−1), tf (xn−2 · en−2), wf (Xn · en ), tf (y · en ), tf (xn−1 · en ), tf
(
x2n−1 · en−2

)
.

The resulting 6 by 6 matrix has rank � 5 (here we work modulo monomials that are
outside the subspace in question and are obviously in TAn+1 · f ). Hence all orbits
over the (n + 1)-jet f , and all orbits corresponding to b = 0 above (being adjacent to
these), are non-simple.
We can now conclude that all orbits in K(x, yn+2) of type fn−2 are non-simple: they

either lie in the closure of the non-simple orbits in K(x, yn+2) considered in 2·2 or in
the closure of the non-simple orbits in K(x, yn+1) considered in 3.
Steps 1 to 3 imply that the simple A-orbits in K(x, yn+2) must be of type fn or

fn−1, and it is clear that we can take Pn ≡ 0 in fn .

Lemma 4·10. Any A-simple germ of local multiplicity n+2 is equivalent to one of the
following germs:

f̃ = (x, yn+2 + x1y + · · · + xn−1y
n−1)

or

f̃k =
(
x, yn+2 + x1y + · · · + xn−2y

n−2 + xk
n−1y

n−1 + xn−1y
n
)
,

where 2 � k < (n + 3)/2 (for odd n) or 2 � k (for even n), or for odd n

f̃∞ = (x, yn+2 + x1y + · · · + xn−2y
n−2 + xn−1y

n ).

(Notice that we do not claim that all these germs areA-simple, just that anyA-simple
germ of multiplicity n + 2 must be equivalent to one of these germs.)
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Proof. From Lemma 4·9,

f = (x, yn+2 + x1y + · · · + xn−2y
n−2 + p(xn−1)yn−1 + q(xn−1)yn ),

where p and q do not both belong to the square of the maximal ideal.
When the linear part of p is non-zero, we can use the weighted version of the

Complete Transversal Method, as presented in [3] to prove that f is A equivalent to

f̃ = (x, yn+2 + x1y + · · · + xn−1y
n−1)

The calculations in the second case, when p belongs to the square of the maximal
ideal are harder. Under this assumption, and given the weights w(xi) = n+ 2− i, for
i = 1, . . . , n−2, w(xn−1) = 2 and w(y) = 1, the weighted homogeneous part of degree
n + 2 of such a germ is

f = (x, yn+2 + x1y + · · · + xn−2y
n−2 + xn−1y

n ).

In what follows we denote byMj
w the ideal in Cn generated by all monomials of

filtration j.
We divide the calculations in steps, using again the weighted Complete Transversal

Method to prove that:

Step 1. All terms of filtration n + 2k, k � 1, belong to TA1 · f +Mn+2k+1
w θf ,

Step 2. If fil v(x, y) = n + 2k + 1, then (0, v(x, y)) ≡ (0, xk+1
n−1y

n−1),Mod TA1 · f +
Mn+2k+2

w θf , k � 1.

Step 3. For n odd and k � (n + 3)/2 the term (0, xk+1
n−1y

n−1) belongs to TA1 · f +
Mn+2k+2

w θf .

Notice that the following elements are in TA1 · f :
(a) wf (Xnen ) = (0, yn+2 + x1y + · · · + xn−2y

n−2 + xn−1y
n ),

(b) tf (α(x) · en ) = (0, α(x)((n + 2)yn+1 + x1 + 2x2y + · · · + nxn−1y
n−1)), ∀α ∈ Mn ,

and
(c) tf (α · ej ) = (0, αyj ), 1 � j � n − 2; tf (α · en−1) = (0, αyn ), ∀α ∈ Mx or

α = Xn . Notice also that
(d) If η(x, y) ∈ TA1 · f, then α(x)η(x, y) ∈ TA1 · f, ∀α ∈ Mx .

Step 1. We use induction. For k = 2 it follows easily that all terms of filtration
n + 4 are in TA1 · f +Mn+5

w θf . By the induction hypothesis, (0, yn+2l) and all terms
(0, α(x)yj ), with filα(x)yj equal to n + 2l, 1 � l � k, are in TA1 · f +Mn+2k+1

w θf .
Let v(x, y) = α(x)yj , fil (v) = n + 2k + 2. If 0 � j � n − 2 or j = n, it follows from

(c) and (d) that (0, v) ∈ TA1 · f +Mn+2k+1
w θf . Otherwise, there are three possibilities:

(i) v(x, y) = α(x)yn+2l , 1 � l � k,
(ii) v(x, y) = α(x)yn+2l+1, α ∈ M2

x, 1 � l � k,
(iii) v(x, y) = xn−2(k−l)−1y

n+2l−1, 1 � l � k,

Case (i) now follows easily from the induction hypothesis and equation (d).
In case (ii), we can assume α(x) is a monomial of filtration 2k−2l+1. Since n+2l+1

and n+2k+2 have different parities, there is an index j such that α(x) = xjβ(x) and
fil (xjy

n+2l+1) = n + 2k′ + 2, for some k′ < k. Then the result follows again from the
induction hypothesis and (d).
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In case (iii), we first use equation (b) to write:

(0, v) ≡ 0,ModTA1 · f +Mn+2l
w θf ,

where

v(x, y) = (n + 2)yn+2l−1 + x1y
2l−2 + · · · + jxjy

j+2l−3 + · · · + nxn−1y
n+2l−3

and fil (xjy
j+2l−3) = n + 2l − 1.

If the parity of j + 2l − 3 is equal to the parity of n + 2l − 1 then
fil (xn−2(k−l)−1y

j+2l−3) = n + 2l′ + 2 for some l′ < k, and we can apply the in-
duction hypothesis. The other possibility is fil (yj+2l−3) = n + 2l′ + 2 for some l′ < k,
and we again get the result.

Step 2. One can easily check the statement for k = 1. Let v(x, y) = α(x)yj ,fil v =
n + 2l + 1, 1 � l � k.

By the induction hypothesis, (0, v(x, y)) ≡ (0, xl+1
n−1y

n−1),ModMn+2k+2
w θf . From

Step 1 it follows that, when j is odd, the element (0, xn−2k+j y
n+j−1) belongs to

TA1 · f +Mn+l+2
w θf . Then, using equation (b), we can write:

(0, v) ≡ 0,ModTA1 · f +Mn+2k+2
w θf ,

where

v(x, y) = (n + 2)yn+2k+1 + (n − 2k)yn−1 + · · · + (n − 2k + 2l)xn−2k+2ly
n+2l−1 + · · ·

+ (n − 2)xn−2y
n+2k−3 + nxn−1y

n+2k−1,

for 0 � l � k − 1.
Moreover,

(0, xn−2k+2ly
n+2l−1) ≡

(
0, xn−2k+2lx

l
n−1y

n−1)
≡

(
0, xl

n−1
(
xn−2k+2ly

n−1)) ≡
(
0, xk+1

n−1y
n−1).

And this proves that TA1 · f +Mn+2k+2
w θf contains all terms of filtration n + 2k +

1, k � 1, Mod (0, xk+1
n−1y

n−1).
Let n be odd, k = (n + 3)/2. Then n + 2k + 1 = 2n + 4, and from equations (b) and

(a), we can write the following two linearly independent equations:

tf (yn+3 · en ) = (0, (n + 2)y2n+4 + x1y
n+3 + · · · + nxn−1y

2n+2) ≡ 0,

modulo TA1 · f +M2n+5
w θf , and

wf
(
X2

nen

)
=

(
0, y2n+4 + 2x1yn+3 + · · · + 2xn−1y

2n+2 + x21y
2 + · · ·

)
,

modulo TA1 · f +M2n+5
w θf .

Step 3. It follows from Step 2 that the above system reduces to:(
0, (n + 2)y2n+4 +Ax

(k+1)/2
n−1 yn−1) ≡ 0, ModTA1 · f +M2n+5

w θf ,

(
0, y2n+4 +Bx

(k+1)/2
n−1 yn−1) ≡ 0, k = (n + 3)/2, ModTA1 · f +M2n+5

w θf

and it is now easy to make an inductive procedure to conclude the proof of Step 3.
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It is a simple calculation to verify that, in any case, for all j � 1, the n + 2k + 1 +

j-transversal over the weighted n + 2k + 1 jet of f is empty and this completes the
proof of Lemma 4·10.

Lemma 4·11. For the germs in the previous lemma we have:

r(n )(f̃ ) = r(n−l,l)(f̃ ) = 2, 1 � l < n/2
r(n/2,n/2)(f̃ ) = 1for even n

and

r(n )(f̃k ) = r(n−l,l)(f̃k ) = 3, 1 � l < n/2
r(n/2,n/2)(f̃k ) = k for even n

and

r(n )(f̃∞) = r(n−l,l)(f̃∞) = 3, 1 � l < n/2.

Proof. For f̃ one calculates up to K-equivalence:

G(n ) ∼ (x1, . . . , xn−1, (n + 2)!y2/2)

and

G(n−l,l) ∼ (x1, . . . , xn−1, cy
2, ε),

where c = (n + 2)(ln + l − 1)/(l + 1) > 0 and y � y1, ε � y2 − y1 in the defining
equations of Ā(k−l,l).
For f̃∞:

G(n ) ∼ (x1, . . . , xn−2,−(n + 2)!y3/3, xn−1)

and

G(n−l,l) ∼ (x1, . . . , xn−2, cy
3, xn−1, ε),

where c = 2(2l − n)(1 + n − l), which is zero for l = n/2 and non-zero for l < n/2.
For f̃k we get, except for l = n/2, the same G(n ) and G(n−l,l) as for f̃∞ and for even

n in addition:

G(n/2,n/2) ∼ (x1, . . . , xn−2, cy
2k , xn−1, ε),

where c = (l − 2)![(n + 2)(l − n − 1)/(2(l + 1))]k � 0.

Proof of Theorem 4·3 (conclusion). Now one easily constructs an M-deformation
of f̃ . Using the adjacencies [f̃2] → [f̃ ], [f̃k+1] → [f̃k ] and [f̃∞] → [f̃(n+1)/2] and
the fact that the corresponding 0-stable invariants differ by at most one, we see by
induction that all f̃k and also f̃∞ have M-deformations, because we can split off the
real Ak (s,n )-points (in the target) from the origin one by one. (For k(s, n) = (n/2, n/2)
an origin-preserving deformation of f̃k+1 to f̃k induces a deformation

Gt
(n/2,n/2) ∼ (x1, . . . , xn−2, ay2k (y2 + bt), xn−1, ε),

where t is the deformation parameter and a, b are non-zero constants. Thus, for
appropriate t, we have a pair of real A(n/2,n/2) source points that are mapped to the
same target point. For the other k(s, n) we have a single real Ak (s,n ) point in the
source, defined by a linear equation, that splits off the origin for t� 0.)
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5. Concluding remarks

Looking at the proof of our main theorem on M-deformations we observe
the following: given any A-simple germ f :Rm , 0 → R

n , 0 of rank n − 1 and
m � n, there exists a germ f ′ of lower codimension such that [f ] → [f ′] and
rk (s,n )(f ) − rk (s,n )(f ′) � 1 for all partitions k(s, n) of n. From this property (�) we
have the following lower bound on the Ae-codimension.

Corollary 5·1. Let f :Rm , 0→ R
n , 0 be an A-simple germ of rank n − 1, then

cod(Ae , f ) � rk (s,n )(f )− 1.

ForA-simple corank-1 germs f :Rn , 0→ R
p , 0, where n < p, it would be interesting

to determine those (n, p) for which an analogue of property (�) holds and then try
to show that there exist M-deformations using the techniques of the present paper.
For particular pairs of dimensions (n, p) such germs indeed have M-deformations.
For n < p, Ak (s,m ) is an isolated and stable s-germ if k(s, m) = (k1, . . . , ks), where
m =

∑
i ki and ki � 0, satisfies the equality (m + s − 1)(p − n + 1) = n + s − 1, and

rk (s,m )(f ) again denotes the number of these concentrated at the origin in the source
of fC (see [18]).
For (n, p) = (1, 2) it is known by classical results of A’Campo and Gusein–Zade that

any germ f has anM-deformation with r(0,0)(f ) = δ(f ) real double points. For corank-1
germs in dimension (2, 3) Mond [14] has shown that there are real deformations with
r(1)(f ) = C(f ) cross-caps and that all A-simple germs, with the exception of the
series Hk , have triple-point number r(0,0,0)(f ) =T (f ) = 0. But for the series Hk Marar
and Mond [12] have constructed M-deformations (which are even good real perturba-
tions). Hence all simple corank-1 germs in dimension (2, 3) have M-deformations. For
corank-1 germs in dimension (3, 4) there are two 0-stable invariants, namely r(1,0)(f )
and r(0,0,0,0)(f ). The latter invariant is 0 for all A-simple germs in the classification
of Houston and Kirk [9], and one can easily show (by splitting-off real A(1,0)-points
from 0 one by one) that there are deformations with r(1,0)(f ) real A(1,0)-points for all
simple corank-1 germs listed in [9]. And these deformations are M-deformations.
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