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Abstract. To a given complex-analytic equidimensional corank-1 germ f , one can associate

a set of integer A-invariants such that f is A-finite if and only if all these invariants are finite.

An analogous result holds for corank-1 germs for which the source dimension is smaller than the

target dimension.

1. Introduction and notation. Let f : Cn, 0 → Cn, 0 be a complex-analytic

corank-1 germ given by the pre-normal form (x, y) 7→ (x, g(x, y)), where (x, y) belongs

to Cn−1 ×C, and let f̃ = (f̃1, . . . , f̃s) : Cn, S → Cn, f̃(S) = q, f̃i(x, yi) = (x, g̃i(x, yi)),

i = 1, . . . , s := |S|, be an s-germ appearing in a deformation of f (here and in what

follows S denotes a finite set of source points being mapped to a common point q in

the target). The corank-1 K-classes of equidimensional germs are those of type Ak, with

representatives (x, yk+1), and the K-classes of s-germs A(k1,...,ks) have an Aki -singularity

at the ith source point. The stable equidimensional corank-1 multi-germs are those being

transverse to their K-class A(k1,...,ks), and the isolated stable singularities amongst these

are those with
∑s
i=1 ki = n.

In the present note we define a set of A-invariants v(k1,...,ks)(f), 1 ≤∑i ki ≤ n, of a

germ f : Cn, 0→ Cn, 0, which, roughly speaking, measure the failure of transversality of

the multi-jet extension of f to the closures of the A(k1,...,ks)-orbits, and show that their

finiteness is necessary and sufficient for the A-finiteness of the germ f (see Theorem 2.6

below). The definition of these invariants is based on the defining equations for the

closures of the K-classes A(k1,...,ks) in the jet-space J `s of corank-1 s-germs in [11].

Let rk(f) := r(k1,...,ks)(f), where
∑s
i=1 ki = n, denote the number of isolated stable

A(k1,...,ks)-points in a generic deformation of f , these are related to a subset of the above

A-invariants in a simple way:

rk(f) = c−1(vk(f) + 1),

2000 Mathematics Subject Classification: Primary 32S05; Secondary 32S10, 58K60.

The paper is in final form and no version of it will be published elsewhere.

[239]



240 J. H. RIEGER

where c =
∏t
i=1(mi!) is an overcount factor caused by those permutations of the s source

points that permute subsets of mi points of the same type Aki , s =
∑t
i=1mi. In dimen-

sion n ≥ 3, the finiteness of the invariants rk(f) alone does, in general, not ensure the

A-finiteness of f (see Example 2.8). Marar, Montaldi and Ruas [7] have given formu-

las for the invariants r(k1,...,ks)(f),
∑s
i=1 ki = n, in the case of weighted homogeneous

corank-1 germs f . The defining equations for the closures of the K-classes A(k1,...,ks) in

the jet-space of corank-1 s-germs J `s in [11] also provide such formulas for general f (not

necessarily weighted homogeneous), see Lemma 2.2 below.

The geometric meaning of the invariants vk(f) for
∑s

i=1 ki =: m < n is less clear

than in the case where m = n. In the special case, where f is A-equivalent to a weighted

homogeneous germ, vk(f) is the number of spheres in the wedge of (n − m)-spheres

of Āk-points in the source (Cn)s of a generic deformation of f . In that case results of

Aleksandrov [1] give formulas for our invariants in terms of the weights and weighted

degrees of f . The weighted homogeneous case, and the case of corank-1 germs from Cn

to Cp with n < p, will be briefly discussed in the concluding section of the present note

(this yields simplified proofs of the results in [7] and of Theorem 2.14 in [6]).

Apart from standard notation and results on determinacy theory, for which we refer

to the survey article by Wall [12], we use the following notation for K-orbits of corank-1

s-germs. Let k be a partition of m with s summands, for which we use three different

notations (each being useful in different contexts):

1. (k1, . . . , ks), where ki ≥ ki+1,

2. (km1
1 , . . . , kmtt ), where kmii := ki, . . . , ki (mi times) and

∑t
i=1mi = s,

3. k(s,m).

The corresponding K-class will be denoted by Ak, where k stands for one of the three

notations above, and Āk denotes the closure of this K-class. For multi-jet spaces we use

the following notation: let π : J `s → (Cn)s be the projection onto the source, ∆ ⊂ (Cn)s

the diagonal and (Cn)(s) := (Cn)s \∆. Setting J`(s) := π−1
(
(Cn)(s)

)
⊂ J`s , we have jet-

extension maps j`(s)f : (Cn)(s) → J`(s) and j`sf : (Cn)s → J`s . For corank-1 s-germs we can

identify (Cn)s with Cn+s−1, with coordinates (x, y1, . . . , ys) = (x1, . . . , xn−1, y1, . . . , ys).

For the latter Cn+s−1 we also use coordinates (x, y1, ε2, . . . , εs), where εj+1 := yj+1 − yj
for j = 1, . . . , s − 1. The coordinates in Cn+s−1 are related by an origin-preserving

linear coordinate change λ(x, y1, . . . , ys) = (x, y1, y2 − y1, . . . , ys − ys−1) with inverse

λ−1(x, y1, ε2, . . . , εs) =
(
x, y1, y1 + ε2, . . . , y1 +

∑s
i=2 εi

)
. By the diagonal in the target

of λ we mean the image of
⋃
i<j{yi − yj = 0} under λ, which is

⋃
i<j

{∑j
l=i+1 εl = 0

}
.

Permutations σ(x, y1, . . . , ys) = (x, yσ(1), . . . , yσ(s)) in the source of λ correspond to linear

origin-preserving coordinate changes λ ◦σ in the target. Given an ideal I in On+s−1, the

local algebras On+s−1/I and On+s−1/(λ ◦ σ)∗(I) are isomorphic, we therefore change

coordinate systems without explicitly mentioning λ. Hence we shall tacitly identify the

three source-spaces of s-fold points (Cn)s with coordinates (x, y1, . . . , x, ys), Cn+s−1 with

coordinates (x, y1, . . . , ys) and Cn+s−1 with coordinates (x, y1, ε2, . . . , εs) and also their

jet-spaces J `s . Furthermore, we will not distinguish permutations σ of source points and

the diagonal ∆ in the first two source-spaces from their λ-images λ ◦ σ and λ(∆) in the
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third source-space. Finally, the ` in J `s is assumed to be sufficiently large (one can take

` =
∑s

i=1(ki + 1)).

2. Invariants and A-finiteness. First, we give formulas for the number of trans-

verse A(k1,...,ks)-points,
∑s

i=1 ki = n, appearing in generic deformations of A-finite

corank-1 germs Cn → Cn (for weighted-homogeneous germs such formulas, in terms

of weights and degrees, may be found in [7]). Let W ⊂ J `s be a closed A-invariant subva-

riety and let iW (f) denote the intersection multiplicity of W and the image of the `-jet

extension j`sf at j`sf(0). If the local ring RW := OJ`s ,j`sf(0)/I(W ) is Cohen-Macaulay then

iW (f) = dimCOn+s−1/(j
`
sf)∗(I(W ))

(in general the intersection number is less than or equal to the dimension on the right).

In order to apply this to W = Ā(k1,...,ks) (X̄ closure of X), we have to “fill-in”

the missing points on the diagonal in the closure of A(k1,...,ks). This can be done as

follows ([11]). Set y := y1 and

g
(i)
1 := ∂ig/∂yi1, i ≥ 1

and define by iteration for j = 1, . . . , s− 1,

g
(0)
j+1 :=

∑

α≥kj+1

g
(α)
j ε

α−kj−1
j+1 /α! , g

(i)
j+1 := ∂ig

(0)
j+1/∂ε

i
j+1, i ≥ 1.

Then

Ā(k1,...,ks) := {g(1)
1 = . . . = g

(k1)
1 = g

(0)
j = . . . = g

(kj)
j = 0 : j = 2, . . . , s}.

These conditions and the obvious “naive” recognition conditions for a singularity of type

A(k1,...,ks) define the same ideal off the diagonal in the source, where the ∆ij :=
∑j
`=i+1 ε`,

i < j, are units (see Remark 2.1 below). Furthermore, the following properties of these

recognition conditions can be checked easily:

(i) the conditions are additive on the diagonal with respect to the multiplicities

m(Aki) = ki + 1 of the component-germs (i.e. the multiplicities of a set of coalescing

source-points have to add),

(ii) Ā(k1,...,ks) ∩∆ has codimension 1 in Ā(k1,...,ks),

(iii) RĀ(k1,...,ks)
is a regular local ring (hence Cohen-Macaulay) and Ā(k1,...,ks) ⊂ J`s

is smooth and has codimension (
∑s
i=1 ki) + s− 1.

Remark 2.1. Here is a brief discussion of the relation between the above recognition

conditions and the “naive” conditions for an A(k1,...,ks)-singularity (the conditions and

their properties (i) to (iii) have been used in [11], see also 2.5 for a simple example).

Setting g(r) := ∂rg/∂yr, the “naive” conditions for an A(k1,...,ks)-singularity at distinct

points p1 := (x, y1), pj := (x, y1 +
∑j
i=2 εi), j = 2, . . . , s are given by:

g(pj)− g(p1) = 0, j = 2, . . . , s,

g(r)(pi) = 0, r = 1, . . . , ki, i = 1, . . . , s.

For all i < j, g(pj)−g(pi) =
∑

α≥ki+1 ∆α
ijg

(α)(pi)/α! (modulo g(r)(pi) = 0, r = 1, . . . , ki)

is divisible by the unit ∆ki+1
ij . Taking i = j − 1 (so that ∆j−1,j = εj) we can obtain
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the defining equations of Ā(k1,...,ks) above by induction on j and kj : working modulo

I(Ā(k1,...,kj−1)) and dividing by powers of εj we can reduce g(pj) − g(p1) to g
(0)
j , and

similarly we can reduce g(r)(pj) to g
(r)
j modulo I(Ā(k1,...,kj−1,r−1)). (Notice that, although

e.g. gy(pj) can be obtained by substituting y1+ε2+. . .+εj for y in g and by differentiating

with respect to any one of these j variables, the definition of the g
(i)
j requires derivatives

with respect to the last variable εj . The reduction of g(pj) − g(p1) to g
(0)
j has removed

the symmetry in these variables, as can be seen in Example 2.5.) Properties (i) and (ii)

concerning the diagonal pi = pj , i 6= j, become obvious after applying a permutation

such that pj+1 = pσ(i) and setting εj+1 = 0 in the equations of Ā(k1,...,ks). Also note that

these equations can be solved for the ∂rg/∂yr1 coordinates, r = 1, . . . ,
∑s
i=1 ki + s − 1,

in J`s , which implies property (iii) above.

Let kmii denote ki, . . . , ki (mi times) and
∑t
i=1 mi = s,

∑t
i=1miki = n, then the

number of A(k
m1
1 ,...,k

mt
t )-points in a generic deformation of a germ f is given by

r(k
m1
1 ,...,k

mt
t )(f) :=

1∏t
i=1(mi!)

· dimCOn+s−1/(j
`
sf)∗(I(Ā(k

m1
1 ,...,k

mt
t ))),

where
∏t
i=1(mi!) is an overcount factor (caused by permutations of Aki-points in the

source) and the second term is equal to the intersection multiplicity i := iĀ
(k
m1
1

,...,k
mt
t

)
(f)

(by (iii) above the relevant local ring is regular). The conservation of i under deformations

then implies that a generic deformation of f has precisely r(k
m1
1 ,...,k

mt
t )(f) transverse

A(k
m1
1 ,...,k

mt
t )-points (note that, by a result of Mather, any K-finite germ has a stable

unfolding whose jet-extension is transverse to any given submanifold in multi-jet space).

Hence we have the following.

Lemma 2.2. Any generic deformation of a K-finite corank-1 germ f : Cn, 0→ Cn, 0,

with r(k
m1
1 ,...,k

mt
t )(f) <∞, has precisely r(k

m1
1 ,...,k

mt
t )(f) transverse A(k

m1
1 ,...,k

mt
t )-points.

From now on we use the following notation for partitions of m with s summands:

k(s,m) := (k1, . . . , ks), ki ≥ ki+1,
∑

i

ki = m.

Viewing the generators of (j`sf)∗(I(Āk(s,m))) as a map

Gk(s,m) = (G1, . . . , Gm+s−1) : Cn+s−1 → Cm+s−1,

where 2 ≤ m ≤ n, and using this notation we have

rk(s,n)(f) := c−1 · dimCOn+s−1/G
∗
k(s,n)Mn+s−1,

where c =
∏t
i=1(mi!).

The following lemma states multi-germ versions of some results in Section 2 of [9].

Lemma 2.3.

(i) Given a pair of A-equivalent, equidimensional corank-1 germs f and f ′, the cor-

responding pairs of germs Gk(s,m) and G′k(s,m) are K-equivalent.
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(ii) Let X be the inverse-image of Āk(s,m) ⊂ J`s under the multi-jet extension of a

stable d-parameter unfolding F of f and π : Cd × Cn+s−1 → Cd the projection, then

Gk(s,m) and π|X are K-equivalent (up to a suspension).

Proof. (i) Let f = l ◦ f ′ ◦ h with (l, h−1) ∈ A be a pair of diffeomorphisms defined on

neighborhoods U and V of 0 in the source and target, and let S = {p1, . . . , ps} ⊂ U be a fi-

nite set of source points. There is an induced diffeomorphism L : J `s , j
`
sf
′(S)→ J`s , j

`
sf(S),

given by j`ρi(qi) 7→ j`(l ◦ ρi ◦ hi)(h−1
i (qi)), i = 1, . . . , s, such that L(j`sf

′(Cns)) =

j`sf(Cns). The sets Āk(s,m) are smooth submanifolds of J `s (see [11]) and clearly

A-invariant (i.e. L(Āk(s,m)) = Āk(s,m)). The contact of Āk(s,m) with j`sf(Cns) at j`sf(S)

and with j`sf
′(Cns) at j`sf

′(S) is therefore the same. The corresponding maps Gk(s,m)

and G′k(s,m) are therefore K-equivalent.

(ii) Choosing coordinates (u, p) ∈ Cd ×Cn+s−1, consider the germ π|X : X, (0, 0)→
Cd, 0. The hypothesis on F implies that X ⊂ Cd ×Cn+s−1 is a smooth submanifold of

dimension d+n−m, and that π|X is a germ of a complete intersection with (possibly) an

isolated singular point at (0, 0), hence K-finite. Now one checks that OX,(0,0)/(π|X)∗Md

is isomorphic to On+s−1/G
∗
k(s,m)Mm+s−1.

Now note that f is stable as an s-germ at p = (x, y1, ε2, . . . , εs) ⇐⇒ jn+1
(s) f is

transverse to its Kn+1-orbit Ak(s,m) at jn+1
(s) f(p) (this is a formulation of Proposition 1.1

in [8] in terms of transversality). Hence, f is unstable as an s-germ ⇐⇒ j`sf fails

to be transverse to some Āk(s,m) ⊂ J`s for ` := m + s ⇐⇒ Gk(s,m) fails to be a

submersion (note that the recognition conditions defining Āk(s,m) depend on the (m+s)-

jet of f , and their composition with j`sf yields Gk(s,m)). Let J(Gk(s,m)) denote the ideal

of (m+s−1)×(m+s−1) minors of dGk(s,m) andMm+s−1 the maximal ideal in Om+s−1,

then

vk(s,m)(f) := dimCOn+s−1/G
∗
k(s,m)Mm+s−1 + J(Gk(s,m))

is a K-invariant of Gk(s,m) “measuring” the failure of transversality of j`sf to Āk(s,m) at

j`sf(0).

Remarks 2.4.

(i) Note that c · rAk(s,n)
(f) is the local multiplicity of the equidimensional germ

Gk(s,n), hence by Theorem 4.5.1 of [12] we have that

vk(s,n)(f) = c · rk(s,n)(f)− 1

(assuming that the RHS is non-negative).

(ii) For m < n the geometric meaning of the invariants vk(s,m)(f) is less clear. For

a weighted homogeneous K-finite germ Gk(s,m) : Cn+s−1, 0 → Cm+s−1, 0—e.g. in the

case when f is weighted homogeneous and vk(s,m)(f) <∞—this invariant is equal to the

Milnor number of Gk(s,m) by a result of Greuel (Korollar 5.8 in [4], see also Chapter 5.B

of [5]). Therefore, by part (ii) of Lemma 2.3, the fibre (π|X)−1(u) over a generic u ∈ Cd, 0

is homotopy equivalent to a wedge of vk(s,m)(f) spheres of dimension n−m, where X is

the inverse image of Āk(s,m) ⊂ J`s under the multi-jet extension-map of a stable unfolding

F of f .
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Example 2.5. For the series of germs fk = (x, y4 + xy2 + xky), k ≥ 2, from the

plane to the plane the corresponding map G(1,1) = (g
(1)
1 , g

(0)
2 , g

(1)
2 ) is given by g

(1)
1 =

4y3
1 + 2xy1 + xk, g

(0)
2 = 6y2

1 + x + 4y1ε2 + ε22 and g
(1)
2 = 4y1 + 2ε2 and is K-equivalent

to (y2k
1 , x, ε2). Hence r(1,1)(fk) = k (this is the double-fold number of the series of germs

112k+1 in [10], which are A-equivalent to fk) and v(1,1)(fk) = 2k−1 (the overcount factor

being c = 2).

Recall that the summands of the partitions k(s,m) are non-increasing. Consider the

partial order on the partitions with s summands, where k(s,m) ≤ k′(s,m′) ⇐⇒ ki ≤ k′i
for all 1 ≤ i ≤ s. The following is the main result of the present note.

Theorem 2.6. Let f : Cn, 0→ Cn, 0 be a corank-1 germ.

(i) The following conditions are equivalent :

(a) f is A-finite,

(b) vk(s,m)(f) <∞ for all partitions k(s,m) with 2 ≤ m ≤ n and m+s ≤ mf (0),

where mf (0) := dimCOn/f∗Mn,

(c) vk(s,m)(f) <∞ for all partitions of m = 2, . . . , n consisting of ones and twos

and satisfying m+ s ≤ mf (0).

(ii) The numbers vk(s,m)(f) are A-invariant.

Proof. (i) The vanishing ideal of the set of K-unstable points of Gk(s,m), i.e. of

G−1
k(s,m)(0) ∩ ΣGk(s,m)

, is

I := G∗k(s,m)Mm+s−1 + J(Gk(s,m)),

and, by the analytic Nullstellensatz, I ⊂ On+s−1 has finite codimension if and only if

V (I) ⊂ {0}. Hence, vk(s,m)(f) < ∞ ⇐⇒ Gk(s,m) is a submersion on some open set

U \ {0} of the origin 0 ∈ Cn+s−1 ⇐⇒ j`sf is transverse to Āk(s,m) at j`sf(p) for all

p ∈ U \ {0}.
Now we claim that

(∗) vk(s,m)(f) <∞ ∀k(s,m), 1 ≤ m ≤ n,
if and only if, for any finite set S of source points in a sufficiently small neighborhood

V \ {0} of 0 ∈ Cn, the s-germ of f at S is transverse to its K-orbit, and hence A-stable.

This follows from the above transversality condition for the finiteness of the vk(s,m)(f),

m ≤ n, and the observation that if 0 is not an isolated Āk(s,r)-point of f , where r > n,

then some vk(s′,n)(f), where s′ ≤ n, must be infinite. Let C be a set of non-isolated

Āk(s,r)-points containing 0 in its closure. For s ≤ n there is a partition k(s, n) < k(s, r)

of n (which is smaller, in the partial order on the set of partitions with s summands,

than k(s, r)), and dimCOn+s−1/G
∗
k(s,n)Mn+s−1 = ∞ (because C ⊂ G−1

k(s,n)(0)), hence

vk(s,n)(f) = ∞. On the other hand, for s > n there is always a suitable permutation

of the s source points such that π(C), where π : Cn+s−1 → C2n−1 is the projection

onto the first 2n− 1 coordinates (corresponding to the projection onto the first n source

points), is a set of non-isolated points containing 0 ∈ Cn+s−1 in its closure. Clearly

π(C) ⊂ G−1
k(n,n)(0), hence vk(n,n)(f) =∞. Therefore, for V sufficiently small, the s-germ
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of f at S ⊂ V \ {0} has K-type Ak(s,m), 1 ≤ m ≤ n, if vk(s,n)(f) < ∞, for all partitions

k(s, n) of n.

The above finiteness condition (∗) can be restricted to certain subsets of the set of

partitions of m, 1 ≤ m ≤ n. First, note that v(1)(f) = ∞ implies v(2)(f) = ∞, because

any non-transverse Ā1-point p must lie in Ā2 (the K-orbit A1 contains the generalized

fold-maps as the only A-orbit) and, in fact, must be a non-transverse Ā2-point (note

that ΣG(1)
⊂ ΣG(2)

). Next, the additivity of the recognition conditions for Āk(s,m) with

respect to the local multiplicities of the component-germs implies that the image of the

jet-extension map j`sf and Āk(s,m) have non-empty intersection at j`sf(0) precisely for

m+ s ≤ dimCOn/f∗Mn—this yields condition (b).

Let 1l denote a sequence of l ones. Using the additivity of the recognition conditions

on the diagonal we have that (by “specializing to the diagonal”)

(G(k1,...,kr−1,1l,kr+l,...,ks), εr+1, . . . , εr+l−1) = G(k1,...,kr−1,2l−1,kr+l,...,ks)

and

(G(k1,...,kr−1,2,1l−1,kr+l,...,ks), εr+1, . . . , εr+l−1) = G(k1,...,kr−1,2l,kr+l,...,ks).

G := Gk(s,m), where k(s,m) is one of the partitions in condition (c), defines an isolated

complete intersection singularity (or a regular complete intersection), both referred to

as ICIS for short. We claim that (G, εr+1) also defines an ICIS, and so does, by induc-

tion, (G, εr+1, . . . , εr+l−1). Notice that the ideals J(G) and J(G, εr+1) are equal modulo

(G, εr+1), hence G∗Mm+s−1 + J(G) is contained in (G, εr+1)∗Mm+s−1 + J(G, εr+1),

which implies the claim. By specializing the partitions in (c) to the diagonal and by per-

muting source points (so that the new sequence of kis obtained after specializing to the

diagonal becomes non-increasing again, i.e. a partition) we can generate all partitions in

condition (b).

Finally, note that the A-stability of the s-germ of f at all S ⊂ U \{0} is equivalent to

the A-finiteness of the germ f (Mather-Gaffney criterion, see e.g. Theorem 2.1 in [12]),

which implies the first statement in the theorem.

(ii) The A-invariance of the numbers vk(s,m)(f) follows from Lemma 2.3, part (i), and

the fact that they are K-invariants of the maps Gk(s,m).

Remark 2.7. There are at most (n2 )2 +n−1 (for even n) and at most (n−1
2 )2 +3n−1

2

(for odd n) invariants in (c), and for mf (0) ≥ 2n these upper bounds are attained.

Example 2.8. The germ f : C3, 0 → C3, 0, (x, y, z) 7→ (x, y, z3 + x2z) fails to be

A-finite. The numbers of isolated stable singularities in a deformation of f , given by

r(3)(f) = r(2,1)(f) = r(1,1,1)(f) = 0,

do not detect this, but v(2)(f) = ∞ does. The local multiplicity of f is three, hence (2)

is the only partition satisfying the conditions in (c).

3. Concluding remarks on the weighted homogeneous case and the case

n < p. We conclude with a couple of remarks.
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(i) In the weighted homogeneous case the invariants vk(s,m)(f) are equal to the Milnor

numbers of the maps Gk(s,m). Hence one can express them in terms of weights and

weighted degrees of f .

(ii) The characterization of A-finite equidimensional corank-1 germs has an analogue

in the case of corank-1 germs from Cn to Cp, where n < p, whose proof is essentially

identical.

First suppose that f = (x, g(x, y)) is weighted-homogeneous, and that for some given

set of weights for x1, . . . , xn−1, y the last component function g has weighted degree d.

Then, by using the weights wt(εj) = wt(y) =: w for j = 2, . . . , s, the ith component

function of Gk(s,m) has weighted degree d − iw. Therefore the invariants vk(s,m)(f) are

equal to the Milnor number (and also to the Tjurina number) of Gk(s,m), and we can use

the formula of Aleksandrov ([1], see also p. 36 of [3]) to express vk(s,m)(f) in terms of d

and the weights of the variables of f .

For m = n the above recovers the formulas for the number of 0-stable invariants

of weighted-homogeneous germs f in terms of weights and degrees in [7] (recall that

rk(s,n)(f) = c−1(vk(s,n) + 1)). But for m = n we can relax the condition of weighted

homogeneity: if f = f0 + f1, where f0 is A-finite and weighted homogeneous and where

f1 has higher weighted degree (with respect to the same weights) then Gk(s,n) is semi-

weighted homogeneous. We can then use the generalized Bezout formula (see e.g. p. 39

of [2]) for the local multiplicity of Gk(s,n) to obtain a formula for vk(s,n)(f) in terms of

weights and weighted degrees of f0.

The explicit defining equations for the closures of A(k1,...,ks) in Section 2 hold also in

a slightly modified form for map-germs f : Cn, 0 → Cp, 0 with n < p. In this case it is

also necessary to consider the closures of the sets A(0,...,0). Using the additivity of these

defining equations on the diagonal one can easily recover Theorem 2.14 of Marar and

Mond [6], see statement (c) in the theorem below.

For n < p we have to replace each of the defining equations g
(l)
j of the closure of

A(k1,...,ks) by p− n+ 1 equations g
(l)
j,i , i = 1, . . . , p− n+ 1, and to also allow ki = 0 (i.e.

non-singular source-points). Letting

Gs := G(0,...,0) : Cn+s−1, 0→ C(s−1)(p−n+1)

denote the map whose 0-set is the closure of A(0,...,0) (s times 0), vs(f) the codimension

of the ideal (Gs, J(Gs)) and mf (0) := dimCOn/f∗Mp, we have the following (note that

we should write partitions in quotes, because the k(s,m) can contain summands that

are 0).

Theorem 3.1. Let f : Cn, 0 → Cp, 0, n < p be a corank-1 germ. The following

conditions are equivalent :

(a) f is A-finite.

(b) vk(s,m)(f) <∞ for all partitions k(s,m) such that k1 ≥ 1 (for s = 1) and ki ≥ 0

(for s > 1), and (m + s − 1)(p − n + 1) ≤ n + s − 1 and m + s ≤ mf (0). Furthermore,

for the partitions k(s,m) not satisfying these conditions the ideals generated by Gk(s,m)

have finite codimension.
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(c) vs(f) <∞ for all s = 2, . . . ,min([p/(p−n)],mf (0)). If p is not divisible by p−n
and mf (0) > p/(p−n) then we need the extra condition that the codimension of the ideal

generated by Gs, for s = [p/(p− n)] + 1, be finite.

Proof. Apart from the following remarks the proof is the same as that of Theorem 2.6.

In statement (b): (m + s − 1)(p − n + 1), where m =
∑

i ki and ki ≥ 0, is the

codimension of the closure of A(k1,...,ks) and, depending on p− n and p, there may be no

partitions k(s,m) for which (m+ s− 1)(p−n+ 1) = n+ s− 1 (corresponding to 0-stable

invariants). If k(s,m) corresponds to a 0-stable invariant and vk(s,m)(f) < ∞ then the

local multiplicities of the maps Gk′(s′,m′) (where s′ ≥ s) are finite for all k′(s′,m′) =

(k′1, . . . , k
′
s, k
′
s+1, . . . , k

′
s′) for which (k′1, . . . , k

′
s) ≥ k(s,m). But if there is no such 0-stable

invariant, we need the extra condition in (b). Also note that the partition (0) is not

needed, because any non-transverse Ā(0)-point is in fact an Ā(1)-point (there is only one

A-orbit within the K-orbit of non-singular source-points).

In statement (c): we can generate all the partitions in the first statement of (b) by

specializing those in the first statement of (c) to the diagonal. If p − n divides p or

mf (0) ≤ p/(p−n) then all Gs with s > p/(p−n) have finite local multiplicity, otherwise

this follows from the extra condition in (c).

Remarks 3.2.

(i) The equivalence of (a) and (c) basically corresponds to Theorem 2.14 of Marar

and Mond [6]: the set D̃s(f) in this theorem is, up to a linear origin preserving coordinate

change, equal to G−1
s (0), and vs(f) < ∞ ⇐⇒ Gs is K-finite ⇐⇒ D̃s(f) is an ICIS.

Furthermore, Gs generates in On+s−1 an ideal of finite codimension ⇐⇒ G−1
s (0) ⊂ {0}

(the formulation of the extra condition in (c) is slightly sharper in the following sense: if

the extra condition is not needed or if it holds for s = [p/(p− n)] + 1 then D̃s(f) ⊂ {0}
for the range of s stated in [6]).

(ii) In the 0-stable case, where k(s,m) is such that (m+ s− 1)(p−n+ 1) = n+ s− 1,

the number of transverse Ak(s,m)-points in a stabilization of f is given by rk(s,m)(f) =

c−1(vk(s,m)(f) + 1), where c is the same overcount factor as in the equidimensional case

n = p. For example, a double-point formula for f in dimension p = 2n is given by r(0,0)(f),

which is equal to 1/2 times the local multiplicity of G(0,0)—for (n, p) = (1, 2) this is the

δ-invariant of f .
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