INVARIANTS OF EQUIDIMENSIONAL CORANK-1 MAPS

JOACHIM H. RIEGER

Institut für Algebra und Geometrie, Universität Halle D-06099 Halle (Saale), Germany E-mail: rieger@mathematik.uni-halle.de

Abstract. To a given complex-analytic equidimensional corank-1 germ f, one can associate a set of integer \mathcal{A} -invariants such that f is \mathcal{A} -finite if and only if all these invariants are finite. An analogous result holds for corank-1 germs for which the source dimension is smaller than the target dimension.

1. Introduction and notation. Let $f : \mathbf{C}^n, 0 \to \mathbf{C}^n, 0$ be a complex-analytic corank-1 germ given by the pre-normal form $(x, y) \mapsto (x, g(x, y))$, where (x, y) belongs to $\mathbf{C}^{n-1} \times \mathbf{C}$, and let $\tilde{f} = (\tilde{f}_1, \ldots, \tilde{f}_s) : \mathbf{C}^n, S \to \mathbf{C}^n, \tilde{f}(S) = q, \tilde{f}_i(x, y_i) = (x, \tilde{g}_i(x, y_i)),$ $i = 1, \ldots, s := |S|$, be an s-germ appearing in a deformation of f (here and in what follows S denotes a finite set of source points being mapped to a common point q in the target). The corank-1 \mathcal{K} -classes of equidimensional germs are those of type A_k , with representatives (x, y^{k+1}) , and the \mathcal{K} -classes of s-germs $A_{(k_1,\ldots,k_s)}$ have an A_{k_i} -singularity at the *i*th source point. The stable equidimensional corank-1 multi-germs are those being transverse to their \mathcal{K} -class $A_{(k_1,\ldots,k_s)}$, and the isolated stable singularities amongst these are those with $\sum_{i=1}^{s} k_i = n$.

In the present note we define a set of \mathcal{A} -invariants $v_{(k_1,\ldots,k_s)}(f)$, $1 \leq \sum_i k_i \leq n$, of a germ $f: \mathbb{C}^n, 0 \to \mathbb{C}^n, 0$, which, roughly speaking, measure the failure of transversality of the multi-jet extension of f to the closures of the $A_{(k_1,\ldots,k_s)}$ -orbits, and show that their finiteness is necessary and sufficient for the \mathcal{A} -finiteness of the germ f (see Theorem 2.6 below). The definition of these invariants is based on the defining equations for the closures of the \mathcal{K} -classes $A_{(k_1,\ldots,k_s)}$ in the jet-space J_s^ℓ of corank-1 s-germs in [11].

Let $r_{\mathbf{k}}(f) := r_{(k_1,\ldots,k_s)}(f)$, where $\sum_{i=1}^{s} k_i = n$, denote the number of isolated stable $A_{(k_1,\ldots,k_s)}$ -points in a generic deformation of f, these are related to a subset of the above \mathcal{A} -invariants in a simple way:

$$r_{\mathbf{k}}(f) = c^{-1}(v_{\mathbf{k}}(f) + 1),$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 32S05; Secondary 32S10, 58K60.

The paper is in final form and no version of it will be published elsewhere.

J. H. RIEGER

where $c = \prod_{i=1}^{t} (m_i!)$ is an overcount factor caused by those permutations of the *s* source points that permute subsets of m_i points of the same type A_{k_i} , $s = \sum_{i=1}^{t} m_i$. In dimension $n \geq 3$, the finiteness of the invariants $r_{\mathbf{k}}(f)$ alone does, in general, not ensure the \mathcal{A} -finiteness of f (see Example 2.8). Marar, Montaldi and Ruas [7] have given formulas for the invariants $r_{(k_1,\ldots,k_s)}(f)$, $\sum_{i=1}^{s} k_i = n$, in the case of weighted homogeneous corank-1 germs f. The defining equations for the closures of the \mathcal{K} -classes $A_{(k_1,\ldots,k_s)}$ in the jet-space of corank-1 s-germs J_s^{ℓ} in [11] also provide such formulas for general f (not necessarily weighted homogeneous), see Lemma 2.2 below.

The geometric meaning of the invariants $v_{\mathbf{k}}(f)$ for $\sum_{i=1}^{s} k_i =: m < n$ is less clear than in the case where m = n. In the special case, where f is \mathcal{A} -equivalent to a weighted homogeneous germ, $v_{\mathbf{k}}(f)$ is the number of spheres in the wedge of (n - m)-spheres of $\bar{A}_{\mathbf{k}}$ -points in the source $(\mathbf{C}^n)^s$ of a generic deformation of f. In that case results of Aleksandrov [1] give formulas for our invariants in terms of the weights and weighted degrees of f. The weighted homogeneous case, and the case of corank-1 germs from \mathbf{C}^n to \mathbf{C}^p with n < p, will be briefly discussed in the concluding section of the present note (this yields simplified proofs of the results in [7] and of Theorem 2.14 in [6]).

Apart from standard notation and results on determinacy theory, for which we refer to the survey article by Wall [12], we use the following notation for \mathcal{K} -orbits of corank-1 *s*-germs. Let **k** be a partition of *m* with *s* summands, for which we use three different notations (each being useful in different contexts):

1.
$$(k_1, \ldots, k_s)$$
, where $k_i \ge k_{i+1}$,

- 2. $(k_1^{m_1}, \ldots, k_t^{m_t})$, where $k_i^{m_i} := k_i, \ldots, k_i$ (m_i times) and $\sum_{i=1}^t m_i = s$,
- 3. k(s,m).

The corresponding \mathcal{K} -class will be denoted by $A_{\mathbf{k}}$, where \mathbf{k} stands for one of the three notations above, and $\bar{A}_{\mathbf{k}}$ denotes the closure of this \mathcal{K} -class. For multi-jet spaces we use the following notation: let $\pi: J_s^\ell \to (\mathbf{C}^n)^s$ be the projection onto the source, $\Delta \subset (\mathbf{C}^n)^s$ the diagonal and $(\mathbf{C}^n)^{(s)} := (\mathbf{C}^n)^s \setminus \Delta$. Setting $J_{(s)}^{\ell} := \pi^{-1}((\mathbf{C}^n)^{(s)}) \subset J_s^{\ell}$, we have jetextension maps $j_{(s)}^{\ell}f: (\mathbf{C}^n)^{(s)} \to J_{(s)}^{\ell}$ and $j_s^{\ell}f: (\mathbf{C}^n)^s \to J_s^{\ell}$. For corank-1 s-germs we can identify $(\mathbf{C}^n)^s$ with \mathbf{C}^{n+s-1} , with coordinates $(x, y_1, \ldots, y_s) = (x_1, \ldots, x_{n-1}, y_1, \ldots, y_s)$. For the latter \mathbf{C}^{n+s-1} we also use coordinates $(x, y_1, \epsilon_2, \ldots, \epsilon_s)$, where $\epsilon_{j+1} := y_{j+1} - y_j$ for $j = 1, \ldots, s - 1$. The coordinates in \mathbf{C}^{n+s-1} are related by an origin-preserving linear coordinate change $\lambda(x, y_1, \ldots, y_s) = (x, y_1, y_2 - y_1, \ldots, y_s - y_{s-1})$ with inverse $\lambda^{-1}(x, y_1, \epsilon_2, \dots, \epsilon_s) = (x, y_1, y_1 + \epsilon_2, \dots, y_1 + \sum_{i=2}^s \epsilon_i)$. By the diagonal in the target of λ we mean the image of $\bigcup_{i < j} \{y_i - y_j = 0\}$ under λ , which is $\bigcup_{i < j} \{\sum_{l=i+1}^j \epsilon_l = 0\}$. Permutations $\sigma(x, y_1, \ldots, y_s) = (x, y_{\sigma(1)}, \ldots, y_{\sigma(s)})$ in the source of λ correspond to linear origin-preserving coordinate changes $\lambda \circ \sigma$ in the target. Given an ideal \mathcal{I} in \mathcal{O}_{n+s-1} , the local algebras $\mathcal{O}_{n+s-1}/\mathcal{I}$ and $\mathcal{O}_{n+s-1}/(\lambda \circ \sigma)^*(\mathcal{I})$ are isomorphic, we therefore change coordinate systems without explicitly mentioning λ . Hence we shall tacitly identify the three source-spaces of s-fold points $(\mathbf{C}^n)^s$ with coordinates $(x, y_1, \ldots, x, y_s), \mathbf{C}^{n+s-1}$ with coordinates (x, y_1, \ldots, y_s) and \mathbf{C}^{n+s-1} with coordinates $(x, y_1, \epsilon_2, \ldots, \epsilon_s)$ and also their jet-spaces J_s^{ℓ} . Furthermore, we will not distinguish permutations σ of source points and the diagonal Δ in the first two source-spaces from their λ -images $\lambda \circ \sigma$ and $\lambda(\Delta)$ in the third source-space. Finally, the ℓ in J_s^{ℓ} is assumed to be sufficiently large (one can take $\ell = \sum_{i=1}^{s} (k_i + 1)$).

2. Invariants and \mathcal{A} -finiteness. First, we give formulas for the number of transverse $A_{(k_1,\ldots,k_s)}$ -points, $\sum_{i=1}^{s} k_i = n$, appearing in generic deformations of \mathcal{A} -finite corank-1 germs $\mathbb{C}^n \to \mathbb{C}^n$ (for weighted-homogeneous germs such formulas, in terms of weights and degrees, may be found in [7]). Let $W \subset J_s^\ell$ be a closed \mathcal{A} -invariant subvariety and let $i_W(f)$ denote the intersection multiplicity of W and the image of the ℓ -jet extension $j_s^\ell f$ at $j_s^\ell f(0)$. If the local ring $R_W := \mathcal{O}_{J_s^\ell, j_s^\ell f(0)}/\mathcal{I}(W)$ is Cohen-Macaulay then

$$i_W(f) = \dim_{\mathbf{C}} \mathcal{O}_{n+s-1}/(j_s^\ell f)^*(\mathcal{I}(W))$$

(in general the intersection number is less than or equal to the dimension on the right).

In order to apply this to $W = \overline{A}_{(k_1,\ldots,k_s)}$ (\overline{X} closure of X), we have to "fill-in" the missing points on the diagonal in the closure of $A_{(k_1,\ldots,k_s)}$. This can be done as follows ([11]). Set $y := y_1$ and

$$g_1^{(i)} := \partial^i g / \partial y_1^i, \qquad i \ge 1$$

and define by iteration for $j = 1, \ldots, s - 1$,

$$g_{j+1}^{(0)} := \sum_{\alpha \ge k_j+1} g_j^{(\alpha)} \epsilon_{j+1}^{\alpha-k_j-1} / \alpha! \,, \qquad g_{j+1}^{(i)} := \partial^i g_{j+1}^{(0)} / \partial \epsilon_{j+1}^i, \quad i \ge 1.$$

Then

$$\bar{A}_{(k_1,\ldots,k_s)} := \{g_1^{(1)} = \ldots = g_1^{(k_1)} = g_j^{(0)} = \ldots = g_j^{(k_j)} = 0 : j = 2, \ldots, s\}.$$

These conditions and the obvious "naive" recognition conditions for a singularity of type $A_{(k_1,\ldots,k_s)}$ define the same ideal off the diagonal in the source, where the $\Delta_{ij} := \sum_{\ell=i+1}^{j} \epsilon_{\ell}$, i < j, are units (see Remark 2.1 below). Furthermore, the following properties of these recognition conditions can be checked easily:

(i) the conditions are *additive* on the diagonal with respect to the multiplicities $m(A_{k_i}) = k_i + 1$ of the component-germs (i.e. the multiplicities of a set of coalescing source-points have to add),

(ii) $\bar{A}_{(k_1,\ldots,k_s)} \cap \Delta$ has codimension 1 in $\bar{A}_{(k_1,\ldots,k_s)}$,

(iii) $R_{\bar{A}_{(k_1,\ldots,k_s)}}$ is a regular local ring (hence Cohen-Macaulay) and $\bar{A}_{(k_1,\ldots,k_s)} \subset J_s^{\ell}$ is smooth and has codimension $(\sum_{i=1}^s k_i) + s - 1$.

REMARK 2.1. Here is a brief discussion of the relation between the above recognition conditions and the "naive" conditions for an $A_{(k_1,\ldots,k_s)}$ -singularity (the conditions and their properties (i) to (iii) have been used in [11], see also 2.5 for a simple example). Setting $g^{(r)} := \partial^r g / \partial y^r$, the "naive" conditions for an $A_{(k_1,\ldots,k_s)}$ -singularity at *distinct* points $p_1 := (x, y_1), p_j := (x, y_1 + \sum_{i=2}^j \epsilon_i), j = 2, \ldots, s$ are given by:

$$g(p_j) - g(p_1) = 0, \qquad j = 2, \dots, s,$$

 $g^{(r)}(p_i) = 0, \qquad r = 1, \dots, k_i, \qquad i = 1, \dots, s.$

For all i < j, $g(p_j) - g(p_i) = \sum_{\alpha \ge k_i+1} \Delta_{ij}^{\alpha} g^{(\alpha)}(p_i) / \alpha!$ (modulo $g^{(r)}(p_i) = 0$, $r = 1, \ldots, k_i$) is divisible by the unit $\Delta_{ij}^{k_i+1}$. Taking i = j - 1 (so that $\Delta_{j-1,j} = \epsilon_j$) we can obtain the defining equations of $\bar{A}_{(k_1,\ldots,k_s)}$ above by induction on j and k_j : working modulo $\mathcal{I}(\bar{A}_{(k_1,\ldots,k_{j-1})})$ and dividing by powers of ϵ_j we can reduce $g(p_j) - g(p_1)$ to $g_j^{(0)}$, and similarly we can reduce $g^{(r)}(p_j)$ to $g_j^{(r)}$ modulo $\mathcal{I}(\bar{A}_{(k_1,\ldots,k_{j-1},r-1)})$. (Notice that, although e.g. $g_y(p_j)$ can be obtained by substituting $y_1 + \epsilon_2 + \ldots + \epsilon_j$ for y in g and by differentiating with respect to any one of these j variables, the definition of the $g_j^{(i)}$ requires derivatives with respect to the last variable ϵ_j . The reduction of $g(p_j) - g(p_1)$ to $g_j^{(0)}$ has removed the symmetry in these variables, as can be seen in Example 2.5.) Properties (i) and (ii) concerning the diagonal $p_i = p_j, i \neq j$, become obvious after applying a permutation such that $p_{j+1} = p_{\sigma(i)}$ and setting $\epsilon_{j+1} = 0$ in the equations of $\bar{A}_{(k_1,\ldots,k_s)}$. Also note that these equations can be solved for the $\partial^r g/\partial y_1^r$ coordinates, $r = 1, \ldots, \sum_{i=1}^s k_i + s - 1$, in J_{ϵ}^{ℓ} , which implies property (iii) above.

Let $k_i^{m_i}$ denote k_i, \ldots, k_i (m_i times) and $\sum_{i=1}^t m_i = s$, $\sum_{i=1}^t m_i k_i = n$, then the number of $A_{(k_i^{m_1}, \ldots, k_i^{m_t})}$ -points in a generic deformation of a germ f is given by

$$r_{(k_1^{m_1},\dots,k_t^{m_t})}(f) := \frac{1}{\prod_{i=1}^t (m_i!)} \cdot \dim_{\mathbf{C}} \mathcal{O}_{n+s-1}/(j_s^\ell f)^* (\mathcal{I}(\bar{A}_{(k_1^{m_1},\dots,k_t^{m_t})}))$$

where $\prod_{i=1}^{t} (m_i!)$ is an overcount factor (caused by permutations of A_{k_i} -points in the source) and the second term is equal to the intersection multiplicity $i := i_{\bar{A}_{(k_1^{m_1},\ldots,k_t^{m_t})}}(f)$ (by (iii) above the relevant local ring is regular). The conservation of i under deformations then implies that a generic deformation of f has precisely $r_{(k_1^{m_1},\ldots,k_t^{m_t})}(f)$ transverse $A_{(k_1^{m_1},\ldots,k_t^{m_t})}$ -points (note that, by a result of Mather, any \mathcal{K} -finite germ has a stable unfolding whose jet-extension is transverse to any given submanifold in multi-jet space). Hence we have the following.

LEMMA 2.2. Any generic deformation of a \mathcal{K} -finite corank-1 germ $f : \mathbb{C}^n, 0 \to \mathbb{C}^n, 0$, with $r_{(k_1^{m_1}, \dots, k_t^{m_t})}(f) < \infty$, has precisely $r_{(k_1^{m_1}, \dots, k_t^{m_t})}(f)$ transverse $A_{(k_1^{m_1}, \dots, k_t^{m_t})}$ -points.

From now on we use the following notation for partitions of m with s summands:

$$k(s,m) := (k_1, \dots, k_s), \qquad k_i \ge k_{i+1}, \qquad \sum_i k_i = m.$$

Viewing the generators of $(j_s^{\ell} f)^* (\mathcal{I}(\bar{A}_{k(s,m)}))$ as a map

$$G_{k(s,m)} = (G_1, \ldots, G_{m+s-1}) : \mathbf{C}^{n+s-1} \to \mathbf{C}^{m+s-1},$$

where $2 \leq m \leq n$, and using this notation we have

$$r_{k(s,n)}(f) := c^{-1} \cdot \dim_{\mathbf{C}} \mathcal{O}_{n+s-1}/G^*_{k(s,n)} \mathcal{M}_{n+s-1},$$

where $c = \prod_{i=1}^{t} (m_i!)$.

The following lemma states multi-germ versions of some results in Section 2 of [9].

Lemma 2.3.

(i) Given a pair of \mathcal{A} -equivalent, equidimensional corank-1 germs f and f', the corresponding pairs of germs $G_{k(s,m)}$ and $G'_{k(s,m)}$ are \mathcal{K} -equivalent.

(ii) Let X be the inverse-image of $\bar{A}_{k(s,m)} \subset J_s^{\ell}$ under the multi-jet extension of a stable d-parameter unfolding F of f and $\pi : \mathbf{C}^d \times \mathbf{C}^{n+s-1} \to \mathbf{C}^d$ the projection, then $G_{k(s,m)}$ and $\pi|_X$ are \mathcal{K} -equivalent (up to a suspension).

Proof. (i) Let $f = l \circ f' \circ h$ with $(l, h^{-1}) \in \mathcal{A}$ be a pair of diffeomorphisms defined on neighborhoods U and V of 0 in the source and target, and let $S = \{p_1, \ldots, p_s\} \subset U$ be a finite set of source points. There is an induced diffeomorphism $L : J_s^\ell, j_s^\ell f'(S) \to J_s^\ell, j_s^\ell f(S)$, given by $j^\ell \rho_i(q_i) \mapsto j^\ell (l \circ \rho_i \circ h_i)(h_i^{-1}(q_i)), i = 1, \ldots, s$, such that $L(j_s^\ell f'(\mathbf{C}^{ns})) = j_s^\ell f(\mathbf{C}^{ns})$. The sets $\bar{A}_{k(s,m)}$ are smooth submanifolds of J_s^ℓ (see [11]) and clearly \mathcal{A} -invariant (i.e. $L(\bar{A}_{k(s,m)}) = \bar{A}_{k(s,m)}$). The contact of $\bar{A}_{k(s,m)}$ with $j_s^\ell f(\mathbf{C}^{ns})$ at $j_s^\ell f(S)$ and with $j_s^\ell f'(\mathbf{C}^{ns})$ at $j_s^\ell f'(S)$ is therefore the same. The corresponding maps $G_{k(s,m)}$ and $G'_{k(s,m)}$ are therefore \mathcal{K} -equivalent.

(ii) Choosing coordinates $(u, p) \in \mathbf{C}^d \times \mathbf{C}^{n+s-1}$, consider the germ $\pi|_X : X, (0, 0) \to \mathbf{C}^d, 0$. The hypothesis on F implies that $X \subset \mathbf{C}^d \times \mathbf{C}^{n+s-1}$ is a smooth submanifold of dimension d+n-m, and that $\pi|_X$ is a germ of a complete intersection with (possibly) an isolated singular point at (0, 0), hence \mathcal{K} -finite. Now one checks that $\mathcal{O}_{X,(0,0)}/(\pi|_X)^*\mathcal{M}_d$ is isomorphic to $\mathcal{O}_{n+s-1}/G^*_{k(s,m)}\mathcal{M}_{m+s-1}$.

Now note that f is stable as an s-germ at $p = (x, y_1, \epsilon_2, \ldots, \epsilon_s) \iff j_{(s)}^{n+1} f$ is transverse to its \mathcal{K}^{n+1} -orbit $A_{k(s,m)}$ at $j_{(s)}^{n+1} f(p)$ (this is a formulation of Proposition 1.1 in [8] in terms of transversality). Hence, f is unstable as an s-germ $\iff j_s^\ell f$ fails to be transverse to some $\bar{A}_{k(s,m)} \subset J_s^\ell$ for $\ell := m + s \iff G_{k(s,m)}$ fails to be a submersion (note that the recognition conditions defining $\bar{A}_{k(s,m)}$ depend on the (m+s)jet of f, and their composition with $j_s^\ell f$ yields $G_{k(s,m)}$). Let $J(G_{k(s,m)})$ denote the ideal of $(m+s-1) \times (m+s-1)$ minors of $dG_{k(s,m)}$ and \mathcal{M}_{m+s-1} the maximal ideal in \mathcal{O}_{m+s-1} , then

$$v_{k(s,m)}(f) := \dim_{\mathbf{C}} \mathcal{O}_{n+s-1}/G^*_{k(s,m)}\mathcal{M}_{m+s-1} + J(G_{k(s,m)})$$

is a \mathcal{K} -invariant of $G_{k(s,m)}$ "measuring" the failure of transversality of $j_s^{\ell} f$ to $\bar{A}_{k(s,m)}$ at $j_s^{\ell} f(0)$.

Remarks 2.4.

(i) Note that $c \cdot r_{A_{k(s,n)}}(f)$ is the local multiplicity of the equidimensional germ $G_{k(s,n)}$, hence by Theorem 4.5.1 of [12] we have that

$$v_{k(s,n)}(f) = c \cdot r_{k(s,n)}(f) - 1$$

(assuming that the RHS is non-negative).

(ii) For m < n the geometric meaning of the invariants $v_{k(s,m)}(f)$ is less clear. For a weighted homogeneous \mathcal{K} -finite germ $G_{k(s,m)} : \mathbb{C}^{n+s-1}, 0 \to \mathbb{C}^{m+s-1}, 0$ —e.g. in the case when f is weighted homogeneous and $v_{k(s,m)}(f) < \infty$ —this invariant is equal to the Milnor number of $G_{k(s,m)}$ by a result of Greuel (Korollar 5.8 in [4], see also Chapter 5.B of [5]). Therefore, by part (ii) of Lemma 2.3, the fibre $(\pi|_X)^{-1}(u)$ over a generic $u \in \mathbb{C}^d, 0$ is homotopy equivalent to a wedge of $v_{k(s,m)}(f)$ spheres of dimension n-m, where X is the inverse image of $\bar{A}_{k(s,m)} \subset J_s^\ell$ under the multi-jet extension-map of a stable unfolding F of f. EXAMPLE 2.5. For the series of germs $f_k = (x, y^4 + xy^2 + x^k y), k \ge 2$, from the plane to the plane the corresponding map $G_{(1,1)} = (g_1^{(1)}, g_2^{(0)}, g_2^{(1)})$ is given by $g_1^{(1)} = 4y_1^3 + 2xy_1 + x^k, g_2^{(0)} = 6y_1^2 + x + 4y_1\epsilon_2 + \epsilon_2^2$ and $g_2^{(1)} = 4y_1 + 2\epsilon_2$ and is \mathcal{K} -equivalent to $(y_1^{2k}, x, \epsilon_2)$. Hence $r_{(1,1)}(f_k) = k$ (this is the double-fold number of the series of germs 11_{2k+1} in [10], which are \mathcal{A} -equivalent to f_k) and $v_{(1,1)}(f_k) = 2k-1$ (the overcount factor being c = 2).

Recall that the summands of the partitions k(s, m) are non-increasing. Consider the partial order on the partitions with s summands, where $k(s, m) \leq k'(s, m') \iff k_i \leq k'_i$ for all $1 \leq i \leq s$. The following is the main result of the present note.

THEOREM 2.6. Let $f : \mathbb{C}^n, 0 \to \mathbb{C}^n, 0$ be a corank-1 germ.

- (i) The following conditions are equivalent:
 - (a) f is \mathcal{A} -finite,

(b) $v_{k(s,m)}(f) < \infty$ for all partitions k(s,m) with $2 \le m \le n$ and $m+s \le m_f(0)$, where $m_f(0) := \dim_{\mathbf{C}} \mathcal{O}_n / f^* \mathcal{M}_n$,

(c) $v_{k(s,m)}(f) < \infty$ for all partitions of m = 2, ..., n consisting of ones and twos and satisfying $m + s \le m_f(0)$.

(ii) The numbers $v_{k(s,m)}(f)$ are \mathcal{A} -invariant.

Proof. (i) The vanishing ideal of the set of \mathcal{K} -unstable points of $G_{k(s,m)}$, i.e. of $G_{k(s,m)}^{-1}(0) \cap \Sigma_{G_{k(s,m)}}$, is

$$\mathcal{I} := G_{k(s,m)}^* \mathcal{M}_{m+s-1} + J(G_{k(s,m)}),$$

and, by the analytic Nullstellensatz, $\mathcal{I} \subset \mathcal{O}_{n+s-1}$ has finite codimension if and only if $V(\mathcal{I}) \subset \{0\}$. Hence, $v_{k(s,m)}(f) < \infty \iff G_{k(s,m)}$ is a submersion on some open set $U \setminus \{0\}$ of the origin $0 \in \mathbb{C}^{n+s-1} \iff j_s^\ell f$ is transverse to $\bar{A}_{k(s,m)}$ at $j_s^\ell f(p)$ for all $p \in U \setminus \{0\}$.

Now we claim that

(*)
$$v_{k(s,m)}(f) < \infty \quad \forall k(s,m), \qquad 1 \le m \le n,$$

if and only if, for any finite set S of source points in a sufficiently small neighborhood $V \setminus \{0\}$ of $0 \in \mathbb{C}^n$, the s-germ of f at S is transverse to its \mathcal{K} -orbit, and hence \mathcal{A} -stable. This follows from the above transversality condition for the finiteness of the $v_{k(s,m)}(f)$, $m \leq n$, and the observation that if 0 is not an isolated $\bar{A}_{k(s,r)}$ -point of f, where r > n, then some $v_{k(s',n)}(f)$, where $s' \leq n$, must be infinite. Let C be a set of non-isolated $\bar{A}_{k(s,r)}$ -points containing 0 in its closure. For $s \leq n$ there is a partition k(s,n) < k(s,r) of n (which is smaller, in the partial order on the set of partitions with s summands, than k(s,r)), and dim_C $\mathcal{O}_{n+s-1}/G^*_{k(s,n)}\mathcal{M}_{n+s-1} = \infty$ (because $C \subset G^{-1}_{k(s,n)}(0)$), hence $v_{k(s,n)}(f) = \infty$. On the other hand, for s > n there is always a suitable permutation of the s source points such that $\pi(C)$, where $\pi : \mathbb{C}^{n+s-1} \to \mathbb{C}^{2n-1}$ is the projection onto the first 2n - 1 coordinates (corresponding to the projection onto the first n source points), is a set of non-isolated points containing $0 \in \mathbb{C}^{n+s-1}$ in its closure. Clearly $\pi(C) \subset G^{-1}_{k(n,n)}(0)$, hence $v_{k(n,n)}(f) = \infty$. Therefore, for V sufficiently small, the s-germ

of f at $S \subset V \setminus \{0\}$ has \mathcal{K} -type $A_{k(s,m)}$, $1 \leq m \leq n$, if $v_{k(s,n)}(f) < \infty$, for all partitions k(s,n) of n.

The above finiteness condition (*) can be restricted to certain subsets of the set of partitions of $m, 1 \leq m \leq n$. First, note that $v_{(1)}(f) = \infty$ implies $v_{(2)}(f) = \infty$, because any non-transverse \bar{A}_1 -point p must lie in \bar{A}_2 (the \mathcal{K} -orbit A_1 contains the generalized fold-maps as the only \mathcal{A} -orbit) and, in fact, must be a non-transverse \bar{A}_2 -point (note that $\Sigma_{G_{(1)}} \subset \Sigma_{G_{(2)}}$). Next, the additivity of the recognition conditions for $\bar{A}_{k(s,m)}$ with respect to the local multiplicities of the component-germs implies that the image of the jet-extension map $j_s^\ell f$ and $\bar{A}_{k(s,m)}$ have non-empty intersection at $j_s^\ell f(0)$ precisely for $m+s \leq \dim_{\mathbb{C}} \mathcal{O}_n/f^* \mathcal{M}_n$ —this yields condition (b).

Let 1_l denote a sequence of l ones. Using the additivity of the recognition conditions on the diagonal we have that (by "specializing to the diagonal")

$$(G_{(k_1,\dots,k_{r-1},1_l,k_{r+1},\dots,k_s)},\epsilon_{r+1},\dots,\epsilon_{r+l-1}) = G_{(k_1,\dots,k_{r-1},2l-1,k_{r+l},\dots,k_s)}$$

and

$$(G_{(k_1,\dots,k_{r-1},2,1_{l-1},k_{r+l},\dots,k_s)},\epsilon_{r+1},\dots,\epsilon_{r+l-1}) = G_{(k_1,\dots,k_{r-1},2l,k_{r+l},\dots,k_s)}.$$

 $G := G_{k(s,m)}$, where k(s,m) is one of the partitions in condition (c), defines an isolated complete intersection singularity (or a regular complete intersection), both referred to as ICIS for short. We claim that (G, ϵ_{r+1}) also defines an ICIS, and so does, by induction, $(G, \epsilon_{r+1}, \ldots, \epsilon_{r+l-1})$. Notice that the ideals J(G) and $J(G, \epsilon_{r+1})$ are equal modulo (G, ϵ_{r+1}) , hence $G^*\mathcal{M}_{m+s-1} + J(G)$ is contained in $(G, \epsilon_{r+1})^*\mathcal{M}_{m+s-1} + J(G, \epsilon_{r+1})$, which implies the claim. By specializing the partitions in (c) to the diagonal and by permuting source points (so that the new sequence of k_i s obtained after specializing to the diagonal becomes non-increasing again, i.e. a partition) we can generate all partitions in condition (b).

Finally, note that the \mathcal{A} -stability of the *s*-germ of *f* at all $S \subset U \setminus \{0\}$ is equivalent to the \mathcal{A} -finiteness of the germ *f* (Mather-Gaffney criterion, see e.g. Theorem 2.1 in [12]), which implies the first statement in the theorem.

(ii) The \mathcal{A} -invariance of the numbers $v_{k(s,m)}(f)$ follows from Lemma 2.3, part (i), and the fact that they are \mathcal{K} -invariants of the maps $G_{k(s,m)}$.

REMARK 2.7. There are at most $(\frac{n}{2})^2 + n - 1$ (for even n) and at most $(\frac{n-1}{2})^2 + 3\frac{n-1}{2}$ (for odd n) invariants in (c), and for $m_f(0) \ge 2n$ these upper bounds are attained.

EXAMPLE 2.8. The germ $f : \mathbf{C}^3, 0 \to \mathbf{C}^3, 0, (x, y, z) \mapsto (x, y, z^3 + x^2 z)$ fails to be \mathcal{A} -finite. The numbers of isolated stable singularities in a deformation of f, given by

$$r_{(3)}(f) = r_{(2,1)}(f) = r_{(1,1,1)}(f) = 0,$$

do not detect this, but $v_{(2)}(f) = \infty$ does. The local multiplicity of f is three, hence (2) is the only partition satisfying the conditions in (c).

3. Concluding remarks on the weighted homogeneous case and the case n < p. We conclude with a couple of remarks.

(i) In the weighted homogeneous case the invariants $v_{k(s,m)}(f)$ are equal to the Milnor numbers of the maps $G_{k(s,m)}$. Hence one can express them in terms of weights and weighted degrees of f.

(ii) The characterization of \mathcal{A} -finite equidimensional corank-1 germs has an analogue in the case of corank-1 germs from \mathbf{C}^n to \mathbf{C}^p , where n < p, whose proof is essentially identical.

First suppose that f = (x, g(x, y)) is weighted-homogeneous, and that for some given set of weights for x_1, \ldots, x_{n-1}, y the last component function g has weighted degree d. Then, by using the weights $\operatorname{wt}(\epsilon_j) = \operatorname{wt}(y) =: w$ for $j = 2, \ldots, s$, the *i*th component function of $G_{k(s,m)}$ has weighted degree d - iw. Therefore the invariants $v_{k(s,m)}(f)$ are equal to the Milnor number (and also to the Tjurina number) of $G_{k(s,m)}$, and we can use the formula of Aleksandrov ([1], see also p. 36 of [3]) to express $v_{k(s,m)}(f)$ in terms of dand the weights of the variables of f.

For m = n the above recovers the formulas for the number of 0-stable invariants of weighted-homogeneous germs f in terms of weights and degrees in [7] (recall that $r_{k(s,n)}(f) = c^{-1}(v_{k(s,n)} + 1)$). But for m = n we can relax the condition of weighted homogeneity: if $f = f_0 + f_1$, where f_0 is \mathcal{A} -finite and weighted homogeneous and where f_1 has higher weighted degree (with respect to the same weights) then $G_{k(s,n)}$ is semiweighted homogeneous. We can then use the generalized Bezout formula (see e.g. p. 39 of [2]) for the local multiplicity of $G_{k(s,n)}$ to obtain a formula for $v_{k(s,n)}(f)$ in terms of weights and weighted degrees of f_0 .

The explicit defining equations for the closures of $A_{(k_1,\ldots,k_s)}$ in Section 2 hold also in a slightly modified form for map-germs $f : \mathbf{C}^n, 0 \to \mathbf{C}^p, 0$ with n < p. In this case it is also necessary to consider the closures of the sets $A_{(0,\ldots,0)}$. Using the additivity of these defining equations on the diagonal one can easily recover Theorem 2.14 of Marar and Mond [6], see statement (c) in the theorem below.

For n < p we have to replace each of the defining equations $g_j^{(l)}$ of the closure of $A_{(k_1,\ldots,k_s)}$ by p-n+1 equations $g_{j,i}^{(l)}$, $i = 1, \ldots, p-n+1$, and to also allow $k_i = 0$ (i.e. non-singular source-points). Letting

$$G_s := G_{(0,\dots,0)} : \mathbf{C}^{n+s-1}, 0 \to \mathbf{C}^{(s-1)(p-n+1)}$$

denote the map whose 0-set is the closure of $A_{(0,...,0)}$ (s times 0), $v_s(f)$ the codimension of the ideal $(G_s, J(G_s))$ and $m_f(0) := \dim_{\mathbf{C}} \mathcal{O}_n/f^*\mathcal{M}_p$, we have the following (note that we should write partitions in quotes, because the k(s,m) can contain summands that are 0).

THEOREM 3.1. Let $f : \mathbf{C}^n, 0 \to \mathbf{C}^p, 0, n < p$ be a corank-1 germ. The following conditions are equivalent:

(a) f is \mathcal{A} -finite.

(b) $v_{k(s,m)}(f) < \infty$ for all partitions k(s,m) such that $k_1 \ge 1$ (for s = 1) and $k_i \ge 0$ (for s > 1), and $(m + s - 1)(p - n + 1) \le n + s - 1$ and $m + s \le m_f(0)$. Furthermore, for the partitions k(s,m) not satisfying these conditions the ideals generated by $G_{k(s,m)}$ have finite codimension.

(c) $v_s(f) < \infty$ for all $s = 2, ..., \min([p/(p-n)], m_f(0))$. If p is not divisible by p-nand $m_f(0) > p/(p-n)$ then we need the extra condition that the codimension of the ideal generated by G_s , for s = [p/(p-n)] + 1, be finite.

Proof. Apart from the following remarks the proof is the same as that of Theorem 2.6. In statement (b): (m + s - 1)(p - n + 1), where $m = \sum_i k_i$ and $k_i \ge 0$, is the codimension of the closure of $A_{(k_1,\ldots,k_s)}$ and, depending on p - n and p, there may be no partitions k(s,m) for which (m + s - 1)(p - n + 1) = n + s - 1 (corresponding to 0-stable invariants). If k(s,m) corresponds to a 0-stable invariant and $v_{k(s,m)}(f) < \infty$ then the local multiplicities of the maps $G_{k'(s',m')}$ (where $s' \ge s$) are finite for all $k'(s',m') = (k'_1,\ldots,k'_s,k'_{s+1},\ldots,k'_{s'})$ for which $(k'_1,\ldots,k'_s) \ge k(s,m)$. But if there is no such 0-stable invariant, we need the extra condition in (b). Also note that the partition (0) is not needed, because any non-transverse $\bar{A}_{(0)}$ -point is in fact an $\bar{A}_{(1)}$ -point (there is only one \mathcal{A} -orbit within the \mathcal{K} -orbit of non-singular source-points).

In statement (c): we can generate all the partitions in the first statement of (b) by specializing those in the first statement of (c) to the diagonal. If p - n divides p or $m_f(0) \leq p/(p-n)$ then all G_s with s > p/(p-n) have finite local multiplicity, otherwise this follows from the extra condition in (c).

Remarks 3.2.

(i) The equivalence of (a) and (c) basically corresponds to Theorem 2.14 of Marar and Mond [6]: the set $\tilde{D}^s(f)$ in this theorem is, up to a linear origin preserving coordinate change, equal to $G_s^{-1}(0)$, and $v_s(f) < \infty \iff G_s$ is \mathcal{K} -finite $\iff \tilde{D}^s(f)$ is an ICIS. Furthermore, G_s generates in \mathcal{O}_{n+s-1} an ideal of finite codimension $\iff G_s^{-1}(0) \subset \{0\}$ (the formulation of the extra condition in (c) is slightly sharper in the following sense: if the extra condition is not needed or if it holds for s = [p/(p-n)] + 1 then $\tilde{D}^s(f) \subset \{0\}$ for the range of s stated in [6]).

(ii) In the 0-stable case, where k(s,m) is such that (m+s-1)(p-n+1) = n+s-1, the number of transverse $A_{k(s,m)}$ -points in a stabilization of f is given by $r_{k(s,m)}(f) = c^{-1}(v_{k(s,m)}(f)+1)$, where c is the same overcount factor as in the equidimensional case n = p. For example, a double-point formula for f in dimension p = 2n is given by $r_{(0,0)}(f)$, which is equal to 1/2 times the local multiplicity of $G_{(0,0)}$ —for (n,p) = (1,2) this is the δ -invariant of f.

Acknowledgements. I am very grateful to the referee for his detailed and critical remarks on the exposition of the results in a previous version of this paper.

References

- A. G. Aleksandrov, Cohomology of quasihomogeneous complete intersections, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), 467–510; English transl.: Math. USSR-Izv. 49 (1985), 437–477.
- [2] V. I. Arnol'd (ed.), Dynamical Systems VI. Singularity Theory I, Encyclopaedia Math. Sci. 6, Springer, Berlin, 1993.

- [3] V. I. Arnol'd (ed.), Dynamical Systems VIII. Singularity Theory II. Applications, Encyclopaedia Math. Sci. 39, Springer, Berlin, 1993.
- [4] G.-M. Greuel, Der Gauβ-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten, Math. Ann. 214 (1975), 235–266.
- [5] E. J. N. Looijenga, Isolated Singular Points on Complete Intersections, London Math. Soc. Lecture Note Ser. 77, Cambridge University Press, Cambridge, 1984.
- [6] W. L. Marar, D. Mond, Multiple point schemes for corank-1 maps, J. London Math. Soc. (2) 39 (1989), 553–567.
- [7] W. L. Marar, J. A. Montaldi, M. A. S. Ruas, Multiplicities of zero-schemes in quasihomogeneous corank-1 singularities Cⁿ → Cⁿ, in: Singularity Theory (Liverpool, 1996), London Math. Soc. Lecture Note Ser. 263, Cambridge University Press, Cambridge, 1999, 353–367.
- [8] J. N. Mather, Stability of C[∞] mappings IV. Classification of stable germs by R-algebras, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 223–248.
- D. Mond, Some remarks on the geometry and classification of germs of maps from surfaces to 3-space, Topology 26 (1987), 361–383.
- [10] J. H. Rieger, Families of maps from the plane to the plane, J. London Math. Soc. (2) 36 (1987), 351–369.
- [11] J. H. Rieger, Recognizing unstable equidimensional maps, and the number of stable projections of algebraic hypersurfaces, Manuscripta Math. 99 (1999), 73–91.
- [12] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc. 13 (1981), 481–539.