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Abstract. Let X be an arrangement of n algebraic sets Xi in d-space, where the Xi are either
parametrized or zero-sets of dimension 0 ≤ mi ≤ d − 1. We study a number of decompositions of
d-space into connected regions in which the distance-squared function to X has certain invariances.
Each region is contained in a single connected component of the complement of the bifurcation set
B of the family of distance-squared functions or of certain subsets of B. The decompositions can
be used in the following proximity problems: given some point, find the k nearest sets Xi in the
arrangement, find the nearest point in X, or (assuming that X is compact) find the farthest point
in X and hence the smallest enclosing (d − 1)-sphere. We give bounds on the complexity of the
decompositions in terms of n, d, and the degrees and dimensions of the algebraic sets Xi.
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1. Introduction. Let X be the union of n algebraic sets Xi of dimension 0 ≤
mi ≤ d−1 in d-space which are defined either by parametrizations or, more generally,
as zero-sets. The dimension d of the ambient space is assumed to be arbitrary but
fixed. Given a point p ∈ Rd with rational or, more generally, with algebraic number
coordinates and a set of defining polynomials of X with rational coefficients, we would
like to do the following:

1. find the k nearest sets Xi;
2. find the nearest point in X;
3. and, provided that X is compact, find the farthest point in X (and hence the

smallest sphere with center p enclosing X).
For all of these proximity problems it is convenient to decompose d-space into certain
connected regions, depending on X, in which the distance-squared function to X has
certain invariances. A number of such decompositions are possible. Some decompo-
sitions have many invariants but also many regions, and it is of interest to bound the
number of regions in terms of n, d, and the degrees and dimensions of the algebraic
sets Xi. For example, the coarsest decomposition considered below consists of the
first-order Voronoi regions, and the finest consists of the regions in the complement
of the bifurcation set of the family of all distance-squared functions on X. However,
all the decompositions studied here have the property that the proximity problems
above can be solved in O(logn) · P time (discarding the preprocessing time for con-
structing the decomposition), where P is a polynomial in the degrees and coefficient
sizes of both the defining polynomials of X and the minimal polynomials of the al-
gebraic number coordinates of p (from section 4 on we shall often concentrate on the
combinatorial complexity, where the degrees and coefficient sizes of these polynomials
are assumed to be bounded by some constant independent of n). Decompositions of
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d-space into regions made of points having certain proximity properties with respect
to some collection of submanifolds of Rd have been studied both in computational
geometry and in singularity theory, but there hasn’t been much interaction between
these fields.

Most of the works in computational geometry consider either the classical, first-
order, Voronoi diagram of sets of isolated points or extensions to arrangements of
linear subspaces of Rd. The relation between higher-order Voronoi diagrams in Rd and
arrangements in Rd+1 is investigated by Edelsbrunner and Seidel [12]. A few works
also consider Voronoi diagrams of arrangements of curved objects. First-order Voronoi
diagrams of disjoint convex semialgebraic sites in d-space are studied in the book of
Sharir and Agarwal [22]. Alt and Schwarzkopf [1] study first-order Voronoi diagrams of
parametrized (semialgebraic) curve-segments and points in the plane. These authors
are also interested in the local geometry of Voronoi edges: for example, they point
out that end-points of self-Voronoi-edges (in the singularity theory literature known
as symmetry sets) correspond to centers of osculating circles at curvature extrema of
a planar curve and also to a cusp singularity of the evolute (or focal set). The local
geometry of such symmetry sets and of evolutes has been studied in great detail in a
number of singularity theory works.

One of the main topics of singularity theory is the classification of stable and un-
stable singularities of functions and maps, and of the bifurcation sets in the parameter
space of families of functions and maps. The bifurcation set of a family of functions
F : Rd × Rm → Rd × R, (p, x) 7→ (p, f(p, x)) consists of all points p in parameter
space Rd for which the function x 7→ f(p, x) has an unstable (degenerate) singularity.
The family of distance-squared functions from any point p ∈ Rd to a parametrized
m-dimensional surface X in d-space is a particular example of such a family, and the
bifurcation set of this family is precisely the union of the evolute and the symmetry
set of X. Porteous [16, 17] has used the classification of families of functions by Thom
(from the early 1960s) to study the relation between the geometry of evolutes and the
curvature of surfaces. Bruce, Giblin, and Gibson [6] have classified the singularities
of symmetry sets of planar curves and of surfaces and space-curves in R3; see also
the recent paper by Bruce [5]. Symbolic algorithms for computing bifurcation sets of
families of projection maps have been studied by Rieger [19, 20] and these algorithms
can also be used, with some minor modifications, to compute other bifurcation sets,
such as evolutes and symmetry sets.

1.1. Assumptions and some notation. Let X := ∪Xi ⊂ Rd be a collection of
n closed algebraic sets Xi and set mi := dimXi (0 ≤ mi ≤ d−1) and m := supmi. For
parametrized algebraic mi-surfaces x 7→ Xi(x) we denote the maximal degree of the
d component functions of Xi(x) by δi, and set δ := sup δi (1 ≤ i ≤ n). For the more
general case of zero-sets Xi = h−1

i (0), where hi := (h1
i , . . . , h

d−mi
i ) : Rd → Rd−mi ,

we assume that Xi, or rather its complexification, is a complete intersection (i.e.,
its codimension is equal to the number of defining equations) and we set ∆i :=
Πj deg hji = degXi and ∆ := sup ∆i (geometrically, degXi is the number of real
and complex intersection points, including those “at infinity,” of Xi and a “generic”
linear subspace of Rd of dimension d−mi).

The following notation will be used in this paper: Z(I) denotes the zero-set of an
ideal I, I(Z) the ideal of polynomials vanishing on Z, I : J the ideal quotient, and
clZ denotes the closure of the set Z. Also, 〈g1, . . . , gs〉 denotes the ideal generated
by the gi, 1 ≤ i ≤ s. The components of a vector x = (x1, . . . , xd) are denoted by
superscripts, so that subscripts can be used to enumerate elements of sets; and (xd)3
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denotes the third power of the dth component.

Next, we need some notation from singularity theory. For most parts of this paper
(sections 2 to 5), it is enough to remember the following notations: a nondegenerate
critical point of a function, where the matrix of second derivatives has maximal rank,
is of type A1 (or of Morse type), a pair of A1 points having the same critical values is
denoted by A2

1, and the least degenerate of the degenerate critical points is of type A2.
The bifurcation set B ⊂ Rd of a family of distance-squared functions is a generally
singular hypersurface whose regular components correspond to (codimension 1) sin-
gularities of type A2 or A2

1 of the distance-squared function. However, in section 6 we
need to count the strata of the singular locus of B corresponding to more degenerate
types of singularities (of codimension ≥ 2). The following notation for these singular-
ities is more or less standard (for more details on the classification of functions up to
K- and R-equivalence see chapter 8 of Dimca’s book [10]). A function f : Rd → R,
x := (x1, . . . , xd) 7→ f(x) has an Ak-singularity at x = 0 if there exists a smooth
coordinate change h : Rd → Rd, defined in the neighborhood of x = 0, such that
f ◦ h(x) = c+ (x1)k+1 +

∑d
i=2 εi(x

i)2, where c is some constant and εi = ±1; see [2].
In other words, Ak denotes an equivalence class of function-germs (we consider pm;u
f and h near x = 0), and the formula above describes a particular representative of
this class. The equivalence classes Ak are orbits of the Mather groups K and R. We
shall abuse the notation A≥k slightly: it will denote all classes of singularities in the
closure of the Ak orbit, not just the orbits represented by c + (x1)≥k+1 +

∑
εi(x

i)2.
Finally, the function f has an Ar≥1-singularity at a set of points {x1, . . . , xr}, if it has

an A≥1-singularity at each xi ∈ Rd and the r critical values f(xi) coincide.

Throughout this paper, dkf(p, x)[v1, . . . , vl] will always denote the kth differential
of a function f with respect to the variables x ∈ Rm and not with respect to the
parameter p ∈ Rd, and this k-linear form dkf should be multiplied with the vectors
vi ∈ Rm, 1 ≤ i ≤ l. Occasionally, we shall omit the parameters and variables (p, x).

Given a hypersurface M ⊂ Rd, we denote the arrangement cut-out by M by
A(M). We denote by |A(M)| the size of this arrangement, that is, the number of
i-cells, 0 ≤ i ≤ d, in A(M). Note that the connected regions of Rd \M are the d-cells
in A(M).

The Voronoi diagram of order k of a set S := {X1, . . . , Xn} of algebraic sets
Xi ⊂ Rd is defined as follows. Set µp(Xi) := infq∈Xi ‖q − p‖2 and let S̃ ⊂ S be a
subset with k elements, 1 ≤ k ≤ n− 1. Then

Vk(S̃) := {p ∈ Rd : µp(Xi) < µp(Xj), for all (Xi, Xj) ∈ S̃ × (S \ S̃)}

is the kth-order Voronoi cell of S̃ (which, in general, is not connected). The kth-order
Voronoi surface Vk of S is the union of the boundaries of such Voronoi cells, i.e.,
Vk := ∪S̃⊂S∂Vk(S̃), and the kth-order Voronoi diagram is the arrangement A(Vk).

1.2. Contents of following sections. In section 2 we study the bifurcation set
B of the family of distance-squared functions on an arrangement of mi-surfaces Xi

in Rd which are parametrized by polynomial maps. In particular, we give bounds for
the number of regions in the complement of B (and, in fact, for |A(B)|) and describe
certain invariants which characterize these regions. We also obtain a result on the local
topology of B that yields a priori information on how the semialgebraic components
of B are glued together. This result is valid both for parametrized surfaces Xi and for
zero-sets and does not assume that the family of distance-squared functions is versal
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(this is a common assumption in singularity theory works on this subject that does
not necessarily hold for “almost all” algebraic surfaces Xi of some bounded degree).

In section 3 we consider the more general case of arrangements of algebraic zero-
sets Xi (note that most zero-sets do not have a global parametrization given as the
image of some polynomial map). For zero-sets we exploit the geometric characteriza-
tion of the singularities of the distance-squared function in terms of the contact order
(or intersection multiplicity) of Xi with certain (d−mi)-spheres, where mi = dimXi.
This avoids the problem of finding local parametrizations of the Xi given by analytic
maps (working with polynomials is much more convenient). The more classical case
of contact between hypersurfaces Xi and osculating circles is treated in subsection
3.1; the more complicated case of contact between algebraic sets Xi of codimension
d−mi ≥ 2 and (d−mi)-spheres is studied in subsection 3.2.

In section 4 we describe an algorithm for determining the regions in the comple-
ment of the bifurcation set B. This algorithm is similar, in its overall structure, to
the algorithms in [19, 20] and uses standard techniques from computational algebra.
We also describe solutions to the proximity problems 1 to 3 stated at the beginning
of this introduction, which are based on the decomposition of d-space into regions in
the complement of B or of certain subsets of B.

In section 5 we present a few examples of these decompositions for curves and
points in the plane, which have been computed with the methods described in section
4.

Finally, in section 6, we compare the combinatorial complexities of the arrange-
ments A(B) and of the kth-order Voronoi diagrams A(Vk). Note that the boundaries
Vk of the Voronoi regions of order k are subsets of B, and the bounds in sections 2 and
3 are therefore upper bounds for the complexity of the kth-order Voronoi diagram of
arrangements of algebraic sets in terms of n, d, and the degrees and dimensions of
these sets. A comparison of the combinatorial complexities of the bifurcation set B
and of the Voronoi boundaries Vk for the more special arrangements studied in [1]
and [22] shows that there is a considerable gap, which can be partially understood
by studying the combinatorial complexity of certain intermediate sets Vk ⊂ Rk ⊂ B.
Even so, for general arrangements of algebraic sets, an asymptotically tight bound
(at least in terms of combinatorial complexity) for the number of regions of Rd \ Vk
remains a widely open problem (for n intersecting hypersurfaces in Rd we show, for
example, that |A(V1)| ∼ O(nd+1) and |A(V1)| ∼ Ω(nd)).

2. The complement of the bifurcation set B of a family of distance-
squared functions. In this section the algebraic mi-surfaces Xi of the arrangement
are parametrized by polynomial maps x 7→ Xi(x), where x = (x1, . . . , xmi) ∈ Rmi .
The necessary modifications in the (more general) case of zero-sets will be described
in section 3. The family of distance-squared functions on Xi is defined by

Fi : Rd × Rmi → Rd × R, (p, x) 7→ (p, fi(p, x) := ‖Xi(x)− p‖2).

Recall that an element of this d-parameter family of functions in mi variables is a
Morse function if its critical points are nondegenerate (i.e., the corresponding matrix of
second derivatives has maximal rank) and have distinct critical values. The bifurcation
set Bi ⊂ Rd of the family Fi is the set of “bad” parameters p for which x 7→ fi(p, x)
fails to be a Morse function. The set Bi is the union of the local bifurcation set

Ei := {p ∈ Rd : ∃x : dfi(p, x) = 0, rank d2fi(p, x) < mi},
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consisting of A≥2-singularities, and the level bifurcation set

Si := cl{p ∈ Rd : ∃x 6= x̄ : dfi(p, x) = dfi(p, x̄) = 0, fi(p, x) = fi(p, x̄)},

consisting of A≥2
≥1-singularities. (The notation Ei and Si indicates that, from a classi-

cal differential geometry point of view, the local and level bifurcation sets are evolutes
and symmetry sets, respectively; see section 3. Also, recall that in all functions de-
pending on the parameters p ∈ Rd, the differentials are with respect to the remaining
variables.)

The bifurcation set B of the arrangement associated to X = ∪Xi is the union of
the bifurcation sets Bi of the Xi and the following intersurface level bifurcation sets:

Si,j := {p ∈ Rd : ∃x, x̄ : dfi(p, x) = dfj(p, x̄) = 0, fi(p, x) = fj(p, x̄)},

that is,

B :=
⋃

1≤i≤n
Ei ∪

⋃
1≤i≤n

Si ∪
⋃

1≤i<j≤n
Si,j .

This definition of B assumes that 1 ≤ dimXi ≤ d−1, but it can be extended easily
to include isolated points Xi = {qi}. For a point qi the sets Ei and Si are defined to be
empty, for a point pair qi, qj the set Si,j is defined to be the hyperplane perpendicular
to qj − qi through (qi + qj)/2, and for surface-point pairs Xi (dimXi ≥ 1), Xj = {qj}
we define

Si,j := {p ∈ Rd : ∃x : dfi(p, x) = 0, fi(p, x) = ‖qj − p‖2}.

The definitions of the local bifurcation sets Ei and of the intersurface level bifur-
cation sets Si,j are fairly straightforward from a computational point of view. The
definition of the intrasurface level bifurcation sets Si is less straightforward: the in-
equalities x 6= x̄, together with the defining equations appearing in the definition,
yield semialgebraic sets S ′i ⊂ Rd × R2mi which are not closed. It is, however, possi-
ble to close up the sets S ′i by adding a set of boundary points ∂S ′i on the diagonal
{x = x̄} ⊂ R2mi (see below). Furthermore, the closed sets S̃i := S ′i ∪ ∂S ′i can be de-
fined by polynomial equations (inequations are not required), which is a big advantage
from a computational algebra point of view.

Let S̄i ⊂ Rd×R2mi denote the set defined by the defining equations of S ′i (omitting
the inequalities x 6= x̄); this is a closed set which coincides with S ′i away from the
diagonal, but has too high dimension on the diagonal. Then the vanishing ideal of
the closure of S ′i is given by the ideal quotient

I(S̄i) : (I(S̄i) + 〈x1 − x̄1, . . . , xmi − x̄mi〉),

whose generators can be determined using Gröbner basis methods (see, for example,
[3, Chapter 6.2]). For zero-sets Xi of codimension ≥ 2 we actually close up the sets
S ′i in this way (see section 3.2). However, for arrangements of parametrized sets (and
of zero-sets of codimension 1; see section 3.1) the defining equations of the closure of
S ′i can be constructed in a more direct way that avoids the expensive computation
of Gröbner bases and also yields some useful information about the topology of the
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Fig. 1. The bifurcation set Bi of a single parabola Xi: the local bifurcation set Ei is the cusp-
shaped curve and the level bifurcation set Si is the solid half-line whose boundary ∂Si in the union
Ŝi of the solid and dashed vertical line coincides with the cusp point. The distance-squared function
to Xi from points of Bi has the following singularities: A3 at the cusp, A2 for all other points of
Ei, and A2

1 for all other points of Si.

bifurcation set Bi. We first give an outline of this construction and its topological
consequences; more detailed statements follow in Proposition 2.1 and its proof.

To find the defining equations of the closure of S ′i, we first “blow up” the diagonal
{x = x̄} ⊂ R2mi by a change of coordinates β that replaces the pair of points (x, x̄) by
(x, x+λ ·ω), where λ ∈ R and ω ∈ Pmi−1 (i.e., we represent the point x̄ by moving it
some distance λ along a ray through x and direction ω). The map β is an isomorphism
for λ 6= 0 “blowing down” the hyperplane {λ = 0} to the diagonal {x = x̄}, which is a
linear subspace of R2mi of codimension mi. Next, we choose a certain set of generators
of I(S̄i) and divide them by suitable powers of λ. The modified generators define a
closed algebraic set S̃i that coincides with the sets S̄i and S ′i in the complement of
the diagonal {λ = 0}. The set of boundary points of S ′i on the diagonal is given by
∂S ′i = S̃i ∩ {λ = 0}. Using the defining equations of the sets S̃i, S ′i, and S̄i and
excluding a Zariski closed subset of Xi in the space of all algebraic sets (where mi, δi,
and d are fixed) one easily checks the following properties. The set S ′i has dimension
d− 1, and “almost all” of its points (p, x, x̄) correspond to pairs of A1-singularities of
the distance-squared function having the same critical values fi(p, x) = fi(p, x̄). The
set ∂S ′i has dimension d−2 and almost all of its points correspond to A3-singularities.
(By contrast, most points of S̄i ∩ {λ = 0} merely correspond to A1-singularities and
form a d+mi-dimensional set.) It therefore follows that the projection of ∂S ′i into the
parameter space Rd is contained in the local bifurcation set Ei (which corresponds to
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A≥2-singularities). The projection of ∂S ′i, denoted by ∂Si, also forms the boundary

of the semialgebraic level bifurcation set Si ⊂ Rd in the smallest real algebraic set Ŝi
containing Si: moving along a generic path from Si to Ŝi \Si we first get a pair of real
A1-singularities having the same critical value, which coalesce in an A3-singularity
as we cross the boundary ∂Si and then become complex. Figure 1 illustrates this
situation in the simple case of a single parabola Xi(x) = (x, x2) in the plane. We can
now give a more precise description of this construction.

Proposition 2.1.
(i) For all (p, x, x) ∈ ∂S ′i, the distance-squared function x 7→ fi(p, x) has an A≥3-

singularity at x. This implies that π(∂S ′i) ⊂ Ei, where π : Rd × R2mi → Rd denotes
the projection onto the first factor.

(ii) The degree of ∂S ′i is of order δ2mi+1
i and that of ∪∂S ′i of order n · δ2m+1.

Proof. (i) The proof of the first part of the proposition follows the construction
outlined above. Set A := (a1, . . . , ami−1, 1), then the map given by

β : R2mi → R2mi , (x, λ,A) 7→ (x, x+ λ ·A)

“blows down” the hyperplane {λ = 0} to the diagonal {x = x̄} and has maximal rank
for λ 6= 0. Note that we have replaced the space of directions ω ∈ Pmi−1 by the affine
chart of vectors A in Rmi whose last component is equal to 1. To cover all of Pmi−1,
mi such charts are required, but it is easy to check that the arguments below do not
depend on the choice of chart. We then claim that the set S̃i can be defined by the
following three equations (omitting the inequality λ 6= 0): by dfi(p, x) = 0 (as before),
and by

Ui(p, x, λ,A) := λ−1
(
dfi(p, x+ λ ·A)− dfi(p, x)

)
= 0,

and by

Vi(p, x, λ,A) := λ−3
(
fi(p, x+ λ ·A)− fi(p, x)− λdfi(p, x)[A]− λ2

2
〈Ui, A〉

)
= 0.

It is easy to see that, away from the diagonal {λ = 0},

dfi(p, x) = Ui(p, x, λ,A) = Vi(p, x, λ,A) = 0

and the original system

dfi(p, x) = dfi(p, x+ λ ·A) = fi(p, x)− fi(p, x+ λ ·A) = 0

define the same zero-sets S ′i ⊂ Rd×R2mi \{λ = 0}. Furthermore, the right-hand sides
of Ui and Vi are divisible by λ and λ3 (by Taylor’s theorem); hence dfi = Ui = Vi = 0
defines a closed algebraic variety S̃i := S ′i ∪ ∂S ′i ⊂ Rd × R2mi .

In fact, S̃i is the smallest closed set containing S ′i, and the boundary ∂S ′i :=
S̃i ∩ {λ = 0} of S ′i in S̃i corresponds to A≥3-singularities of the distance-squared
function x 7→ fi(p, x). The boundary ∂S ′i is defined by the following equations:

dfi(p, x) = 0,

Ui(p, x, 0, A) = d2fi(p, x)[A] = 0,

Vi(p, x, 0, A) = − 1

12
d3fi(p, x)[A3] = 0.
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This system “recognizes” an A≥3-singularity of x 7→ fi(p, x) at x—the condition for
an A≥3-singularity is precisely that dfi = 0 and d2fi[v] = 0, d3fi[v

3] = 0 for some
nonzero vector v (see, for example, Porteous [18, p. 397]).

(ii) The degree of the variety ∂S ′i defined by the above system of equations is at
most of order δ2mi+1

i (by Bezout’s theorem), so that the degree of the union of n such
varieties is of order

∑n
i=1 δ

2mi+1
i ≤ n · δ2m+1.

Remarks. 1. Patching together the S̃i in the mi affine charts in the proof of
part i yields a variety V ⊂ Rd × Rmi+1 × Pmi−1 whose projection π onto Rd is
the intrasurface level bifurcation set Si. To compute the defining equations of Si it is
sufficient to use a single “good” affine chart for Pmi−1: for example, (a1, . . . , ami−1, 1)
is good if dimV > dim(V ∩{ami = 0}). In this case, the missing component of V “at
infinity” will be closed up by the projection π.

2. Part i of the proposition also holds locally for germs of C∞-submanifolds Xi

of dimension mi (note that the proof merely depends on the Taylor expansion of fi at
(p, x) = (p0, x0)). In particular, it also holds for algebraic zero-sets of dimension mi

(which will be studied in section 3), because these sets have a parametrization which
is even analytic.

3. For m = 1 and d = 2, the set ∪∂S ′i consists of isolated points (pl, xl) ∈ R2×R
(this can be checked by a simple dimensional argument), and there are at most O(n·δ3)
such endpoints by the proposition above. The projections pl of these points into the
plane are possible endpoints of the level-bifurcation set S = ∪Si. However, their
projections xl onto R correspond to curvature extrema of Xi and each curvature
extremum corresponds to one endpoint. But X = ∪Xi has at most O(n · δ) curvature
extrema.

Proposition 2.2. For all points p in a single connected region of Rd \ ∪Ei the
collection of distance-squared functions {x 7→ fi(p, x) : 1 ≤ i ≤ n} has a constant
number, c, of critical points, where

n ≤ c ≤
n∑
i=1

(2δi − 1)mi ∼ O(n · δm).

Proof. From the definition of the local bifurcation sets Ei we see that the distance-
squared functions x 7→ fi(p, x) have isolated critical points (of multiplicity 1) for all
p ∈ Rd \ ∪Ei. Each fi is nonnegative and has degree 2δi. Hence, each fi has at least
one local minimum and at most (2δi − 1)mi critical points; this yields the desired
bounds for c.

Remark. For arrangements of hypersurfaces Xi (i.e., mi = d − 1) the number of
critical points c has the following geometrical interpretation: it is equal to the number
of normal lines of X = ∪Xi passing through the point p.

Proposition 2.3. The number of connected regions of Rd \ B (and, in fact, the
size of A(B)) are at most of order n2d · δ(2m+1)d. Furthermore, let p ∈ Rd \B, and let

ξ1,ν1
(p), ξ2,ν2(p), . . . , ξc,νc(p)

denote the critical points ξl,νl(p) of the collection of distance-squared functions x 7→
fνl(p, x), where νl ∈ {1, . . . , n}, ordered by increasing distance. That is, fνl(p, ξl,νl(p))
< fνl+1

(p, ξl+1,νl+1
(p)). For all points p in a single connected region of Rd \B we have

the following: (i) the numbers ν1, . . . , νc are invariant, and (ii) the maps p 7→ ξl,νl(p)
are continuous for 1 ≤ l ≤ n.
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Proof. The bifurcation set B is a semialgebraic subset of a closed real algebraic
set B̂ ⊂ Rd, and the number of connected regions cut out by B is less than or equal
to the number of regions cut out by B̂. The number of connected regions of Rd \ B̂
is equal to the (d− 1)st Betti number of B̂ plus 1 (see below), and the desired upper
bound follows at once from a result of Milnor [15] (which says that the sum of the
Betti numbers of B̂ is of order (deg B̂)d) and the bound for the degree of B̂ derived
below. (On the other hand, the singular stratification of B̂ has O((deg B̂)d) strata
and |A(B)| ≤ |A(B̂)|, which yields the bound for |A(B)|.)

The (linear) formula for the number of connected components of Rd \ B̂ in terms
of the (d − 1)st Betti number of B̂ follows from standard duality results in algebraic
topology: roughly speaking, either from Lefschetz duality (which yields an isomor-
phism between the zeroth homology group H0 of Rd\B̂ and the dth cohomology group
Hd of the pair (Rd, B̂)) and the isomorphism Hd(Rd, B̂) ∼= Hd−1(B̂) (coming from the
standard exact homology sequence of the pair (Rd, B̂)); or, more directly, one can use
Alexander duality to get an isomorphism between H0 of Rd \ B̂ and Hd−1 of B̂. The
more precise argument (included in parentheses below) is a bit more complicated,
due to the possible noncompactness of B̂ and the appearance of reduced homology
groups and might be skipped. (Let Sd = Rd ∪{∞} and B̂c = B̂ ∪ {∞} denote 1-point
compactifications; then the Alexander duality yields the following isomorphism of re-
duced (co)homology groups H̃0(Sd \ B̂c) ∼= H̃d−1(B̂c). (See [11, Section 8.15, Chapter
VIII]). The set B̂ is a closed real algebraic set; hence H̃0(Sd \ B̂c) ∼= H̃0(Rd \ B̂) and
bi(B̂c) = bi(B̂), for all i > 0. Finally, note that the rank of the zeroth homology group
is one plus that of the reduced one.)

We claim that the degree of B̂ is of order n2δ2m+1. The set B̂ is the union of (n2 )

(real algebraic) sets Ŝi,j , n sets Ŝi, and n sets Êi. The orders of the degrees of the

Ŝi and the Êi are lower than those of the Ŝi,j ; hence it suffices to estimate the degree

of Ŝi,j . So let S̃i,j ⊂ Rd × Rmi+mj be the real algebraic set defined by the defining
equations of Si,j (omitting the existential quantifier). The restriction of the projection

π : Rd × Rmi+mj → Rd to S̃i,j yields the semialgebraic set Si,j . Complexifying the

defining equations of S̃i,j and taking the real part of the projection π onto Cd of

the resulting zero-set yields a closed real algebraic set Ŝi,j ⊂ Rd which contains the

semialgebraic set Si,j . Suppose that codimŜi,j = 1 (otherwise the complement of Ŝi,j
is connected, and we are finished), and let L ⊂ Rd be any line. Now there are two
cases: (1) the set A := π−1(L) ∩ S̃i,j consists of isolated points (the “generic case”)
and (2) dimA = e > 0. Let π̄ : Rd × Rmi+mj → Rmi+mj denote the projection onto
the second factor, let L̄ ⊂ Rmi+mj be any linear subspace of codimension e such that
π̄−1(L̄) is not contained in A and set Ā := A∩ π̄−1(L̄). The sets A in case 1 and Ā in
case 2 are discrete point sets, and the restriction of π to these point sets onto the set
of intersection points Ŝi,j ∩ L is surjective. The degree of Ŝi,j is therefore bounded
by the number of points of A (or Ā in case 2). Inspecting the defining equations of
these sets, we get from Bezout’s theorem that

deg Ŝi,j ≤ (2δi − 1)mi · (2δj − 1)mj · 2max(δi, δj)

(counting both real and complex roots with their multiplicities).

For the proof of the second part of the proposition, consider the following real
algebraic set:

ΣFi := {(p, x) : dfi(p, x) = 0} ⊂ Rd × Rmi .
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The set ΣFi is the critical set of the family Fi of all distance-squared functions fi on
Xi. The fibers π−1(p) ∩ ΣFi of the projection π : Rd × Rmi → Rd correspond to the
critical points of fi from p. The restriction of π to ΣFi is a covering map whose branch-
locus is the (preimage of the) evolute Ei and which is finite-to-one off the branch-locus.
The number of points in each fiber π−1(p) ∩ ΣFi is therefore finite and constant for
all points p in a connected region of Rd \ Ei. The same is true for the total number c
of critical points of a collection {fi}1≤i≤n of distance-squared functions on X := ∪Xi

for all p in a single connected region of Rd \ ∪Ei. Furthermore, the indices ν1, . . . , νc
are invariant within a connected region of Rd \ (∪Ei) ∪ (∪Si,j), because c is constant
and permutations of indices can only occur along the intersurface level bifurcation
sets Si,j . Finally, let U be any connected region of Rd \∪Ei and consider the union of
the n bundles ∪ni=1π

−1(U) ∩ ΣFi . This is a semialgebraic set consisting of c disjoint
components of dimension d, and these components are the graphs of continuous maps
hj : U → Rmi , 1 ≤ j ≤ c (these facts are established by arguments that are quite
similar to the proof of the first main structure theorem in [4, Chapter 2.2]; in fact,
most stratification schemes of semialgebraic sets seem to be based on some version of
this theorem). The composition of the hj with the projection π̄ : Rd×Rmi → Rmi is a
continuous map, which implies that the c critical points of the collection of distance-
squared functions x 7→ fi(p, x), 1 ≤ i ≤ n, vary continuously with p ∈ U . The
continuity of the maps p 7→ ξl,νl(p) for all p within a single connected region of Rd \B
then follows from the results above and the fact that the permutation of the critical
points of a single function x 7→ fi(p, x) can only occur on Si.

3. Contact of X with spheres and the definition of B for zero-sets X.
The fibers of the distance-squared function from a point p ∈ Rd are (d − 1)-spheres
of varying radius r, given by {x ∈ Rd : ‖x − p‖2 − r2 = 0}. The conditions for
an Ak-singularity of the distance-squared function, which appear in the definition
of the bifurcation set B, can be reformulated in more geometric terms involving the
contact between a family of such spheres and a collection X = ∪Xi of algebraic
sets. Using these more geometric conditions, we can easily define, and compute, the
bifurcation set B in the case of algebraic sets Xi given as zero-sets of polynomials
hji ∈ Q[x] = Q[x1, . . . , xd], 1 ≤ j ≤ d−mi.

We first consider the special case of algebraic hypersurfaces (codimension 1) where
the local and level bifurcation sets of the distance-squared function are the well-
known evolutes and symmetry sets of classical differential geometry (section 3.1). In
section 3.2 we consider the more general case of arrangements of algebraic sets Xi of
codimension 1 ≤ d −mi ≤ d − 1 which are complete intersections (i.e., are defined
by d −mi polynomials). Note that the case of points Xi (of codimension d) can be
handled as in section 2.

3.1. Arrangements of hypersurfaces, evolutes, and symmetry sets. First,
recall that a hypersurface Xi in d-space has d− 1 (not necessarily distinct) principal
curvatures κj and directions dj which are the eigenvalues and eigendirections of the
Weingarten map. (The Weingarten map Wp : TpXi → TpXi, v 7→ −∇vN measures
the rate of change of the normal direction N along a direction v in the tangent space
of Xi at p.) A (d− 1)-sphere is a curvature sphere at x ∈ Xi if its center lies on the
normal line through x and its radius r is the inverse of one of the principal curvatures
of Xi at x. The unique great circle in this curvature sphere whose tangent line at x
is oriented along the principal direction associated to 1/r is an osculating circle. The
evolute (or focal surface) Ei of Xi is the locus of centers of such osculating circles
and of the curvature spheres containing them (for each surface patch of Xi there are
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generically d− 1 sheets of the evolute, one for each principal curvature).
The distance-squared function from p ∈ Rd to Xi has an Ak-singularity (k ≥ 1)

at x ∈ Rd if and only if there exists a circle with center p having (k+ 1)-point contact
with Xi at x. The order of contact is ≥ 2 if p lies on the normal line to Xi at x and ≥ 3
if, in addition, the circle is an osculating circle. The local bifurcation set Ei consists
of points p for which the distance-squared function to Xi has an A≥2-singularity;
such points are centers of osculating circles (and of curvature spheres). The local
bifurcation set Ei is therefore the evolute of Xi. The relation between singularities of
the distance-squared function, normal singularities of submanifolds (i.e., singularities
of the exponential map of the normal bundle), and the possible types of contact
between these submanifolds and spheres was first studied by Porteous; see [16] and
[17].

The intra- and intersurface level bifurcation sets Si and Si,j are loci of centers of
bitangent spheres touching X = ∪Xi in two distinct points (the spheres can shrink
to a point as their centers tend to the self-intersection locus of X). If both points of
tangency lie on a single surface Xi then the center belongs to Si, otherwise it belongs
to Si,j . Clearly, the distance-squared function from a center of a bitangent sphere has
the two points of tangency as its critical points, and the corresponding critical values
are given by the square of the radius of the bitangent sphere. The locus of centers
of bitangent spheres of a hypersurface is known as symmetry set in the differential
geometry literature, and the singularities of such symmetry sets of plane curves and
of surfaces in 3-space have been classified by Bruce, Giblin, and Gibson [6]. (In the
pattern recognition literature, the symmetry set of a plane curve is also known under
the names skeleton, medial axis, and symmetric axis transform.)

Using these geometrical descriptions of the local bifurcation sets Ei and of the
level bifurcation sets Si and Si,j , we can now define the bifurcation set of the distance-
squared functions for arrangements of algebraic hypersurfaces given as zero-sets Xi =
h−1
i (0). Below, V ‖W denotes the condition that the pair of vectors V,W in Rd is

parallel (obviously, this condition involves the vanishing of d − 1 functions involving
the components of the vectors), and S(p, x, r) := ‖x−p‖2−r2 defines a (d−1)-sphere
with center p and radius r. The fact that (at least) one of the principal curvatures of
Xi at x is equal to 1/r is equivalent to the vanishing of the following two equations:

Qi(x, u) := det

(
(d2hi(x)− u · I) dhi(x)

(dhi(x))t 0

)
(where I denotes the d× d identity matrix) and

Ri(x, u, r) := u2r2 − ‖dhi(x)‖2.
(The condition Qi = Ri = 0 can be deduced easily from the standard formula for the
principal curvatures of a hypersurface defined as zero-set; see, e.g., [23, p. 204]. Note
that the derivation of this formula [23, pp. 202–204] is for hypersurfaces in 3-space,
but the d-dimensional case (d ≥ 2) is analogous.)

Using this notation, the local bifurcation sets (evolutes) are defined as follows:

Ei := {p ∈ Rd : ∃x, u, r :hi(x) = S(p, x, r) = Qi(x, u) = Ri(x, u, r) = 0,

dhi(x)‖dS(p, x, r)}.
The level bifurcation sets (symmetry sets) are given by

Si := cl{p ∈ Rd : ∃x1 6= x2 :hi(xk) = 0, dhi(xk)‖(xk − p), k = 1, 2;

‖x1 − p‖2 = ‖x2 − p‖2}
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and

Si,j := {p ∈ Rd : ∃xi, xj :hk(xk) = 0, dhk(xk)‖(xk − p), k = i, j;

‖xi − p‖2 = ‖xj − p‖2}.

The estimates in Propositions 2.1, 2.2, and 2.3 for arrangements of parametrized
surfaces, in terms of n and δ, have the following analogues, (i)–(iii) of 3.1, in the case
of (d− 1)-dimensional zero-sets.

Proposition 3.1. Let B denote the bifurcation set of the family of distance-
squared functions on a collection X = ∪ni=1Xi of algebraic hypersurfaces of maximal
degree ∆. Then the following holds: (i) the degree of ∪∂S ′i is at most of order n ·∆2d;
(ii) the number of critical points of the distance-squared function from any point p ∈
Rd \ ∪Ei to X is at most of order n ·∆d; and (iii) the number of connected regions of

Rd \ B and the size of A(B) are at most of order n2d ·∆2d2

.

Proof. For statement (i), we modify the defining equations of Si, as in the case of
parametrized sets Xi, by blowing up the diagonal {x1 = x2} ⊂ R2d by setting x2 :=
x1 +λ ·ω, where ω ∈ Pd−1, and by dividing certain generators of the resulting ideal by
suitable powers of λ. Let S̃i be the zero-set of these modified defining equations and
let S ′i denote the semialgebraic set that coincides with S̃i off the diagonal {λ = 0};
then again ∂S ′i = S̃i ∩ {λ = 0} (see the proof of Proposition 2.1). For statements
(ii) and (iii) we simply follow the proofs of Propositions 2.2 and 2.3 using the new
definitions of the components of B.

3.2. Arrangements of algebraic sets of higher codimension. Let Xi =
h−1
i (0) be the mi-dimensional zero-set of a polynomial map hi := (h1

i , . . . , h
d−mi
i ) :

Rd → Rd−mi . The distance-squared function from p to Xi has an Ak-singularity at x
if and only if there exists a (d−mi)-sphere with center p having (k+ 1)-point contact
with Xi at x. Algebraically, the order of contact (or intersection multiplicity) between
Xi and a (d −mi)-sphere, with defining equations s1(ξ) = · · · = smi(ξ) = 0, at x is
equal to the dimension of the vector space

R[ξ]/〈h1
i (ξ − x), . . . , hd−mii (ξ − x), s1(ξ − x), . . . , smi(ξ − x)〉.

It is easy to see that such a sphere has at least 2-point contact with Xi at x if its
center p lies in the normal space NxXi = x + span{dh1

i (x), . . . , dhd−mii (x)} of Xi at
x (this assumes that x is a regular point of Xi, but the algebraic definition of the
intersection multiplicity above is also valid for the singular locus of Xi).

We can now define the local bifurcation set Ei for complete intersections Xi and
give an estimate for its degree. The point p lies in the normal space of Xi at x if
x−p ∈ span{dh1

i (x), . . . , dhd−mii (x)}, which means that all (d−mi+1)× (d−mi+1)

minors of (dhi(x)
x−p ) have to vanish. Note that only mi of these minors are independent

and that each of them has degree O(∆i). Let Mi := (M1
i , . . . ,Mmi

i ) : Rd × Rd →
Rmi be a d-parameter family of polynomial maps, depending on the variables x and
parameters p, whose component functions are such independent minors. Then ϕi :=
(hi,Mi) : Rd × Rd → Rd, (p, x) 7→ ϕi(p, x) is a d-parameter family of polynomial
maps from Rd to Rd. Using the algebraic definition of the intersection multiplicity,



PROXIMITY IN ARRANGEMENTS OF ALGEBRAIC SETS 445

one checks that the simple roots in x of ϕi correspond to points of Xi having 2-point
contact with (d −mi)-spheres with center p through x. Roots of higher multiplicity
correspond to points x in which the order of contact is at least 3-point; hence we
define

Ei := {p ∈ Rd : ∃x : ϕi(p, x) = det dϕi(p, x) = 0}.

The product of the degrees of these defining equations of Ei is at most O(∆
2(mi+1)
i ).

The level bifurcation set of the family of all distance-squared functions to a pair
of complete intersections Xi = h−1

i (0) and Xj = h−1
j (0) of dimension mi and mj is

given by

Si,j := {p ∈ Rd : ∃x, x̄ : ϕi(p, x) = ϕj(p, x̄) = 0, ‖x− p‖2 = ‖x̄− p‖2}
and has degree at most O(∆mi+1

i ∆
mj+1
j ). The level bifurcation set of a single set Xi

is given by

Si := cl{p ∈ Rd : ∃x 6= x̄ : ϕi(p, x) = ϕi(p, x̄) = 0, ‖x− p‖2 = ‖x̄− p‖2}

and has degree at most O(∆
2(mi+1)
i ). Recall that Si is the projection of the algebraic

set S̃i := S ′i ∪ ∂S ′i. The set S̃i is the closure of the difference of two algebraic sets
U \V , where U is the zero-set of the defining equations of Si, omitting the inequations
x 6= x̄, and where V is defined by the equations of Si and by x = x̄. Hence, S̃i =

Z(I(U) : I(V )) is an algebraic set of degree at most degU ∼ O(∆
2(mi+1)
i ), and its

projection Si is a semi-algebraic subset of an algebraic set of degree O(∆
2(mi+1)
i ).

Next recall that the boundary S ′i of S̃i is contained in the diagonal E := {x =
x̄} ⊂ R2d. The subspace E is linear which implies that deg S̃i ∩ E = deg S̃i and that

S ′i ⊂ S̃i ∩ E has degree at most O(∆
2(mi+1)
i ).

Finally, note that the number of critical points of the distance-squared function
from some fixed point p ∈ Rd \ Ei is finite and bounded above by the degree of the
map ϕi, which is O(∆mi+1

i ). Summing up, we have the following proposition.
Proposition 3.2. Let B denote the bifurcation set of the family of distance-

squared functions on a collection X = ∪ni=1Xi of algebraic sets of maximal degree ∆
and maximal dimension m. Then the following holds: (i) the degree of ∪∂S ′i is at
most of order O(∆2(m+1)); (ii) the number of critical points of the distance-squared
function from any point p ∈ Rd \ ∪Ei to X is at most of order n · ∆m+1; and (iii)
the number of connected regions of Rd \ B and the size of A(B) are at most of order
n2d ·∆2(m+1)d

Remarks. 1. Note that the estimates i, ii, and iii yield in the case of hypersurfaces
(m = d− 1) the same estimates as in Proposition 3.1 (i), (ii), and (iii).

2. The estimate (i) implies for arrangements of plane curves (where m = 1) that
there are at most O(n ·∆4) endpoints of the level bifurcation set. But, again using
the fact that these endpoints correspond to curvature extrema of the curves Xi, one
checks that actually there are at most O(n ·∆) such endpoints.

3. It is also interesting to compare these estimates for arrangements of zero-
sets with the corresponding bounds in the special case of parametrized mi-surfaces
given in section 2. Not surprisingly, the combinatorial complexities (fixing the degrees
∆ or δ) are the same. However, in terms of algebraic complexity, the estimates in
Propositions 2.1, 2.2, and 2.3 for arrangements of parametrized surfaces are sharper
than the corresponding ones in Proposition 3.2 This can be seen using the following
fact.
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Lemma 3.3. The degree ∆i of a parametrized mi-surface Xi given by

x 7→ Xi(x) := (X1
i (x), . . . , Xd

i (x)), δi := sup
j

degXj
i

is of order δmii (which implies, for arrangements of such surfaces, that ∆ ∼ O(δm)).
Proof. Let L be a (d−mi)-dimensional linear subspace of Rd not contained in Xi,

and let L be given as zero-set of some linear map L = (L1, . . . , Lmi) : Rd → Rmi . By
Bézout’s theorem, L◦Xi : Rmi → Rmi has at most δmii roots (counting multiplicities,
complex roots, and roots at infinity), hence |L ∩Xi| ∼ O(δmii ).

4. Determining the connected regions of Rd \ B, and applications to
proximity queries. This section consists of two parts: in subsection 4.1 we sketch
the exact symbolic computation of connected regions of Rd \B of constant description
size for arrangements of algebraic sets defined by polynomials with rational coeffi-
cients. And in subsection 4.2 we discuss how this partition of Rd can be used to
efficiently answer proximity queries for points with algebraic number coordinates. In
terms of combinatorial complexity (where the degrees and coefficient sizes of the defin-
ing polynomials of the algebraic sets are bounded by some constant), computing the
partition takes O(n4d−6+ε) (for d ≥ 3) or O(n4+ε) (for d = 2) expected time (here
ε is some small positive constant), and answering a proximity query takes O(logn)
time. In dimensions 2 and 3, the time for computing the partition almost matches
the number of regions of Rd \ B (in the worst case), but in higher dimensions the
computation time is much larger than the number of regions. In section 6 we shall
study certain partitions, cut out by subsets of B, which have a lower combinatorial
complexity but can still be used for the same proximity problems.

4.1. Determining the partition. The bifurcation set B of the family of distance-
squared functions between points p ∈ Rd and a collection of algebraic sets is a semi-
algebraic set which is the projection of a real algebraic set B̃ ⊂ Rd × Ra, where
a ≤ 2m (for parametrized mi-surfaces, m := supmi) or a = 2d (for zero-sets). The
defining equations of the components Ẽi, S̃i, S̃ij of B̃ are described in sections 2 and
3 and are polynomials with rational coefficients (we assume that the Xi are defined
by polynomials over Q). If π denotes the restriction to B̃ of the obvious projection
from Rd×Ra to Rd and if B̂ ⊂ Rd is a closed real algebraic set containing B, then we
have the following set-up for the algorithm below (which consists of three steps):

B̃ ⊂ Rd × Rayπ
B ⊂ B̂ ⊂ Rd

1. Eliminate x1, . . . , xa between the defining equations of B̃. Result: the defining
equations of the real algebraic set B̂ ⊂ Rd.

2. Decompose Rd into connected regions (of constant combinatorial complexity)
such that each such region lies in a single component of Rd \ B̂ (and hence of
Rd \ B).

3. Optional step: determine the connected regions of Rd \ B by deleting the
“branches” of B̂ \ B from B̂.

In these steps we use known techniques; here we discuss their complexity and give
some references.
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Step 1. The set B̃ has 2n+ (n2 ) components; the combinatorial complexity of the
elimination is therefore O(n2). Next, we consider the algebraic complexity. Recall
from section 3.2 that, for zero-sets Xi of codimension ≥ 2, the generators of the
ideals I(S̃i) have to be precomputed from certain ideal quotients. In all other cases
the defining equations of the components of B̃ are already known. For parametrized
surfaces one has to eliminate mi (for B̃l = Ẽi), 2mi (for B̃l = S̃i), or mi + mj

variables (for B̃l = S̃i,j). During the elimination, which can use either multipolynomial
resultants (see, for example, [7]) or Gröbner bases, one can remove repeated factors,
because the later steps of the algorithm only require information about the radicals
of the elimination ideals I(B̂l) := I(B̃l)∩Q[p]. (Note that the worst-case computation

time is DO(v) for the multipolynomial resultant and D2O(v)

for Gröbner bases, where
D ≤ δ or ∆ is the maximal degree of the input polynomials and v = d+a the number
of variables.)

Step 2. We mention two algorithms in (i) and (ii) below which can be used to com-
pute a partition of Rd into connected regions, of constant combinatorial complexity,
in the complement of B̂. The first is the classical one and has been used to compute
the examples shown in section 5; the second is more efficient. Recall that B̂ is the
union of the zero-sets of N ∼ O(n2) polynomials of maximal degree D ∼ O(δ2m+1)
(for parametrized Xi) or O(∆2(m+1)) (for zero-sets Xi).

(i) The cylindrical algebraic decomposition of Collins [9] yields at most (ND)2d

d-cells in the complement of Rd \ B̂. The cells are diffeomorphic to open d-cubes (so
that the number of lower dimensional cells in their closure is independent of N) and

can be determined in L3(ND)2d time (where L denotes the maximal coefficient size
of the input polynomials).

(ii) Chazelle et al. [8] (see also [22, Theorem 8.23]) describe a stratification
which yields d-cells in the complement of B̂ whose closure contains a number of lower
dimensional cells which does not depend on N . Assuming that the maximal degree
D and the bit lengths of all polynomials arising during the computation are bounded
by some constant, this stratification consists of at most O(N2d−3+ε) (for d ≥ 3) or
O(N2+ε) (for d = 2) cells which can be determined deterministically in O(N2d+1)
time or by a randomized algorithm in O(N2d−3+ε) (for d ≥ 3) or O(N2+ε) (for d = 2)
expected time (here ε denotes an arbitrarily small positive constant). Furthermore,
given some point p ∈ Rd, the cell containing p can be determined in O(logN) time.
The drawback of this stratification procedure is that, considering the degree D as a
variable, the number of cells and the running time become doubly exponential in d
with base D.

Remark. The algorithm of Grigor’ev and Vorobjov [14] can be used to find the
representative points of a partition of Rd\B̂ into connected regions, and this algorithm

produces at most (ND)d
2

such points in LO(1)(ND)O(d2) time. But it is not clear
whether the number of lower-dimensional cells in the closure of each of these regions
is independent of N (also, some extra work would be required to compute the region
boundaries).

Step 3. The algorithms in Rieger [19, 20] can be adapted to determine the con-
nected regions in the complement of B. The adapted algorithm is based on a very
coarse “stratification” (in which the strata can have singularities) of B̂ consisting of
O(n2) · P “branches” (where P is a polynomial in the degrees of the Xi) such that
each “branch” either lies entirely in B or in B̂ \B. Picking a “good” sample point q in
each “branch,” one can count the number k of real roots of the specialization I(B̃)p=q
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(using results from real algebra): if k > 0, then the “branch” belongs to B, otherwise
we delete it. The running time of this procedure is quadratic in n and polynomial
in the remaining parameters. However, a region in the complement of B̂ could have
up to O(N) = O(n2) “branches” of B̂ in its closure, and in the proximity queries
discussed next it is important that the regions have a constant number of cells in
their closures.

4.2. Answering proximity queries. We now discuss how the decompositions
above can be used to answer proximity queries exactly (i.e., without numerical er-
rors). Let p ∈ Rd be a point whose coordinates (α1, . . . , αd) are algebraic numbers,
represented by minimal polynomials mj(t) = 0 and isolating intervals with rational
endpoints. Given p and a set of defining polynomials of X with rational coefficients
we would like to do the following:

1. find the k nearest sets Xi;
2. find the nearest point in X;
3. and, provided that X is compact, find the farthest point in X (and hence the

smallest sphere with center p enclosing X).

For all three problems we first decompose Rd into regions which lie in a single con-
nected component in the complement of ∪Si,j (or B or B̂—the latter two possibilities
yield finer decompositions but with the same “leading term” with respect to the
asymptotic complexity in the number of regions). For problem 1 we store for each
region the k nearest Xi (for any sample point in the region), for problem 2 the nearest
Xi, and for problem 3 the farthest. This completes the preprocessing.

Next, given p, we use the algorithm in [8] to find the region containing p. This
takes O(logn) time, assuming that the degrees and coefficient sizes of the defining
polynomials of X and of the minimal polynomials mj are bounded by some constant.
This solves problem 1 already. In the case of problem 2 (respectively, 3) we now know
the set Xi in the arrangement that contains the nearest (respectively, farthest) point
q ∈ X from p.

The only remaining task, then, is to determine the coordinates (β1, . . . , βd) of the
point q ∈ Xi. The coordinates are algebraic numbers, and we want to compute their
minimal polynomials and isolating intervals. We know from sections 2 and 3 that the
critical points of the distance-squared function from p to Xi are either the real roots
of df1

i (p, x) = · · · = dfmii (p, x) = 0, where df ji ∈ Q(α1, . . . , αd)[x], (for parametrized

mi-surfaces Xi) or of ϕ1
i (p, x) = · · · = ϕdi (p, x) = 0, where ϕji ∈ Q(α1, . . . , αd)[x],

(for zero-sets Xi). The real roots ξ1, . . . , ξs of these systems are isolated and have
algebraic coordinates whose minimal polynomials and isolating intervals can be de-
termined by computing a diagonal basis of the systems and by isolating the roots of
univariate polynomials with algebraic coefficients (using primitive element methods
and the modified Uspenski algorithm). For parametrized surfaces Xi we have to de-
termine the root ξj , 1 ≤ j ≤ s, for which the algebraic number fi(p, ξj) is minimal
(problem 2) or maximal (problem 3); and the result is q = Xi(ξj), whose coordi-
nates are algebraic numbers. For zero-sets Xi we have to determine the ξj for which
‖ξj − p‖2 is minimal or maximal; and the result is q = ξj .

Remarks. 1. The decomposition of d-space into connected regions in the comple-
ment of Y := ∪Si,j is finer than it needs to be for answering the above queries. In

section 6 we study certain subsets Rk and R̃k of Y which cut out far fewer regions (see
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Fig. 2. The set B̂ for a pair of parabolas.

Proposition 6.1 for precise statements). Using the above exact symbolic methods, one
can replace Y by the following sets: in problem 1 by Rk, in problem 2 by R1, and in
problem 3 by R̃1.

2. However, in problems 2 and 3, if one replaces the exact symbolic computation of
the nearest and farthest point q ∈ X from p by the numerical curve-tracing procedure
sketched below, then the decomposition into regions of Rd \ Y is too coarse, and one
must replace Y by the full bifurcation set B! The numerical procedure consists of
the following: determine one sample point p′ for each region in the complement of
B (or B̂) and the corresponding nearest or farthest point q′ ∈ X. After determining
the region containing p (as before), one knows that any path in this region joining its
sample point p′ with p corresponds to a unique path in X joining the corresponding
nearest/farthest points q′ and q. This follows from the fact that the critical points of
the distance-squared function are isolated in the complement of B and the continuity
of the map which assigns to p its nearest/farthest point in X (Proposition 2.3). This
would not be the case if we replace B by Y .

5. Some examples for arrangements in the plane. The first example, in
Figure 2, shows a pair of parabolas X1(x) = (x, x2 − 1), X2(x) = (x, 1− x2) together
with the set B̂ which contains the bifurcation set B. It should be noted that most
curves in Figure 2, except for the intercurve level bifurcation set, are already known
from Figure 1: the first parabola X1 and the sets Ê1 = E1 (a cusp-shaped curve) and
Ŝ1 (a vertical line) are exactly as shown in Figure 1, and turning Figure 1 upside
down yields X2, E2, and Ŝ2 (Ŝ2 coincides with Ŝ1). The set Ŝ1,2, which contains the
intercurve level bifurcation set S1,2 (but we do not know whether it is equal to it),
consists of a horizontal line through the origin and the zero-set Z of an irreducible
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Fig. 3. Cylindrical algebraic decomposition of B̂ and a pair of parabolas.

(over Q) degree 12 polynomial. The set Z has three real components: a compact curve
with 6 cusps and a pair of nonsingular curves passing through the intersection points
of the parabolas. Figure 3 shows a cylindrical algebraic decomposition of the plane
into regions in the complement of R2 \ B̂ ∪X1 ∪X2, which are arranged in “vertical
cylinders.” The cylinders are bounded by vertical tangent lines or by vertical lines
passing through singular points. The regions within a cylinder I × R, where I is an
interval on the x-axis, are separated by nonintersecting function graphs over I.

The second example, in Figure 4, shows the set Ŝ1,2 for a parabola X1(x) = (x, x2)
and a point X2 = (1, 2). Note that the Voronoi diagram of X1, X2 consists of just
two regions: the region cut out by Ŝ1,2 containing the point X2 and the complement

of the closure of this region. The curve Ŝ1,2 has 2 cusps, which correspond to centers
of osculating circles of X1 which pass through the point X2. Figure 5 illustrates this
fact: the cusps of Ŝ1,2 lie on the evolute E1 = Ê1 of the parabola X1 (and hence are
centres of osculating circles having A2-contact with X1).

6. Regions of Rd \B and Voronoi regions. The estimates in sections 2 and 3
for the size of A(B) (in terms of n, d, and the degrees and dimensions of the Xi) yield
upper bounds for the complexity of the kth-order Voronoi diagram. They also bound
the complexity of Voronoi diagrams of collections Xs := ∪iXs

i of closed semialgebraic
sets Xs

i ⊂ Rd, each given as unions and intersections of O(1) “elementary” sets of
the form {x ∈ Rd : h(x) ? 0}, where ? ∈ {=, <,>,≤,≥} (actually, any such Xs

i can
be defined by choosing ? ∈ {=, <}). For each Xs

i we can define a real algebraic set
Xi ⊃ Xs

i , using the O(1) polynomials h, such that dimXi = dimXs
i . If Bs and B are

the bifurcation sets of Xs and X := ∪iXi, then Bs ⊂ B; in fact B \ Bs consists of the
closure of certain (d− 1)-cells of B. The size of the arrangement A(Bs) (and hence of
the kth-order Voronoi diagram of Xs) is therefore bounded above by |A(B)|.

A comparison of the bounds for the size of A(B) and of Voronoi diagram A(Vk)
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Fig. 4. The set Ŝ1,2 for a parabola X1 and the point X2 = (1, 2) (marked by a cross).
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Fig. 5. The sets Ŝ1,2 and Ê1 for a parabola X1 and the point X2 = (1, 2).

reveals, however, a considerable gap—at least in the special cases where something
about the complexity of the Voronoi diagram is known. The works on Voronoi di-
agrams of arrangements of (semi-)algebraic sets study the combinatorial complexity
(i.e., assume that the degrees of the algebraic sets in an arrangement are bounded
above by some constant). In this case, |A(B)| ∼ O(n2d). On the other hand, Sharir
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and Agarwal show in [22, Appendix 7.1] that the size of the first-order Voronoi dia-
gram of n disjoint convex semialgebraic sets of “constant description size” (i.e., defined
by O(1) polynomial (in)equations of bounded degree and coefficient size) in d-space
is O(nd+ε) (for any ε > 0). And Alt and Schwarzkopf [1] show that the first-order
Voronoi diagram of n points and disjoint parametrized algebraic curve segments in
the plane, which also do not have self-intersections, has O(n) size and can be con-
structed by a randomized algorithm in O(n logn) (expected) time. Their algorithm
concentrates on the combinatorial aspect of the problem and assumes that the semi-
algebraic level bifurcation sets Si and Si,j (in our notation) can be determined by
some numerical polynomial equation solver. We have seen in previous sections that
the bifurcation set can also be determined by exact symbolic methods.

On the other hand, the first-order Voronoi diagram of the dn ∼ Θ(n) intersecting
hyperplanes Xij := {xi = j}, where 1 ≤ i ≤ d and 1 ≤ j ≤ n, has Θ(nd) connected
d-dimensional regions (recall that (x1, . . . , xd) are coordinates in Rd). Hence we have
the lower bound |A(V1)| ∼ Ω(nd).

The goal of the present section, then, is to study the gap in the combinatorial
complexities of A(B) and of A(Vk). To this end, we shall derive a bound for the
combinatorial complexity of certain intermediate sets Vk ⊂ Rk ⊂ B, which we are
going to define next.

Roughly speaking, the sets Rk are constructed by deleting from the intersurface
level bifurcation set Y := ∪1≤i<j≤nSi,j ⊂ B certain “branches” that cannot belong
to Vk. In order to describe this construction, we need the following notation. Recall
the notation for an Ar≥1-singularity of the distance squared-function (see section 1.1).
For a family of distance-squared functions f(p, x) parametrized by the coordinates of
the points p ∈ Rd, we denote the set of points p for which f has a singularity of type
Ar≥1 by L(Ar≥1). Geometrically, it is the locus of centers of r-tangent spheres (i.e.,
spheres touching the algebraic set X in r distinct points). Now set

Yr := Y ∩ L(Ar≥1).

Furthermore, let Yr1,...,rs denote the locus of common intersection points of s such sets
Yri . In order to avoid redundancies, let us agree that the indices are nonincreasing,
i.e., ri ≥ ri+1. It is also convenient to define the “closure” of Yr1,...,rs as

Ȳr1,...,rs :=
⋃
{Ya1,...,at : t ≥ s, ai ≥ ri, 1 ≤ i ≤ s}. (∗)

Note that the points p of the s-fold self-intersection locus of Yr1,...,rs of Y = Ȳ2

are centers of s concentric ri-tangent spheres (where ri ≥ 2). Also note that p ∈
Ȳr1,...,rs \ Yr1,...,rs if and only if there are more than s such spheres or some sphere
has more than ri points of tangency. To save breath, we shall often refer to the “k
smallest ri-tangent spheres” with common center p ∈ Yr1,...,rs , k ≤ s, rather than to
the “subset of the set of s simultaneous Ar≥1-singularities with the k smallest critical
values.” Finally, let Sc1,...,ct be the locus of common intersections of t sets Xi of
codimension ci := d−mi, which corresponds to the intersection locus of ( t2 ) branches
of Y , and define its “closure” S̄c1,...,ct as in (∗). Each branch consists of centers of
spheres tangent to a pair of intersecting sets Xi, Xj whose radius tends to zero as the
center approaches Xi ∩Xj , such spheres will be called vanishing spheres. We are now
ready to construct the sets Rk.
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First, we decompose the intersurface level bifurcation set Y into certain branches
which, for generic arrangements X, will be (d− 1)-dimensional. Let B(Y ) denote the
set of connected components (branches) of Y \ Ȳ3 ∪ S̄1,1. Note that all points of such
a branch lie either in Vk ⊂ Y or in Y \ Vk, because for all these points we have a pair
of critical points of the distance-squared function whose critical value is distinct from
all other critical values.

Next, we decompose the self-intersection locus of Y into connected components
of i-fold intersections, i = 2, 3, . . . , s and compare the radii of ≥ 2-tangent spheres
associated to the i branches of B(Y ) passing through an i-fold intersection point.
Let us call the set of Xj ∈ {X1, . . . , Xn} containing the r points of tangency of an
r-tangent sphere the support set of this sphere and the smallest sphere among a set
of concentric r-tangent spheres with the same support set the minimal sphere. We
also consider any vanishing sphere to be minimal. If, at any point p of the self-
intersection locus, the ≥ 2-tangent sphere associated with some branch of B(Y ) does
not belong to the k smallest minimal spheres with center p (including the vanishing
sphere if p ∈ Sc1,...,ct) and distinct support sets, then this branch cannot belong to Vk.
Deleting all such branches from Y yields the set Rk. To be a bit more precise, let L be
the set of “strata” of the “stratification” (the reason for the quotes will be explained
in the remark below) of the self-intersection locus of Y into connected components
of Yr1,...,rs (s, ri ≥ 2), Sc1,...,ct (t ≥ 2), and Sc1,...,ct ∩ Yr1,...,rs (t, ri ≥ 2, s ≥ 1).
For any l ∈ L, let lk denote the set of branches b ∈ B(Y ) passing through l which
correspond to the k smallest minimal ≥ 2-tangent spheres with center in l, which
by definition have distinct support sets (if there are fewer than k minimal spheres
with distinct radius, then lk contains all branches through l that correspond to some
minimal sphere). We can now define

Rk := {b ∈ B(Y ) : b ∈ lk, for all l ∈ L : l ⊂ clb} ∪ Ȳ3 ∪ S̄1,1.

The principal result of the present section is based on an enumeration of the
connected components of the self-intersection locus of Y , on the one hand, and of
those components that also belong to Rk, on the other hand. We give an outline of
our enumeration technique. Given an arrangement X = ∪ni=1Xi, there are Πs

i=1( nri )

sets Ȳr1,...,rs , and each of them has a constant number of connected components (recall
that the maximal degree of the defining equations of X and the ambient dimension
are assumed to be fixed). The number of connected components of Yr1,...,rs depends
on the number of connected components of all the (lower dimensional) sets

Ya1,...,at ⊂ Ȳr1,...,rs \ Yr1,...,rs

in its boundary. For “large enough” s and r1, . . . , rs (see more precise statements
below), the boundary of Yr1,...,rs will be empty, so that Yr1,...,rs has as many con-
nected components as Ȳr1,...,rs . We call a connected component of such a nonempty
set Yr1,...,rs , whose boundary is empty, a maximal component, and Yr1,...,rs a maximal
set. (Note that its index set r1, . . . , rs is maximal, with respect to the natural partial
order of Ns, among the nonempty sets Ya1,...,as . Among these nonempty sets, however,
it will be the one with minimal dimension.) Likewise, the combinatorial complexity
of the closures of the sets Sc1,...,ct and Sc1,...,ct ∩ Yr1,...,rs is O(nt) and O(nt+Σri), re-
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spectively, and the complexity of the interiors of these sets will depend on the number
of components in their boundary (for Σri and Σcj sufficiently large we get, again,
maximal sets with empty boundary). By inductively deleting the lower dimensional
boundary components from Y = Ȳ2, beginning with the maximal components, whose
boundary is empty, we obtain a “stratification” of Y whose “strata” are the connected
components of the sets Yr1,...,rs , Sc1,...,ct and their intersections. The number of strata
obtained in this way is of the order of the number of maximal sets (recall that a given
maximal set has O(1) connected components, in terms of combinatorial complexity).

Remarks (refining stratification to get genuine stratification). 1. First, the rough
idea. The strata of this stratification of Y can have singularities along the intersection
of Y with the local bifurcation set E := ∪Ei. For example, the intersurface level
bifurcation curve Y in Figure 2 has a component C with six cusps contained in Y ∩E
(C is the small compact curve in the center of the figure). So what is going on here?
The strata of C are connected components of Yr1,...,rs and correspond to points p ∈ Rd
for which the distance-squared function to X has s simultaneous singularities of type
Ari≥1. But any r-tuple of singular points with the same critical values belongs to Ar≥1:

for example, the regular branches of C in Figure 2, which are of type A2
1 = {A1, A1},

but also the cusps, which are of type {A2, A1}. Roughly speaking, one can further
subdivide the components (i.e., the strata) of Y into submanifolds (i.e., genuine strata)
by requiring that its singular points Σ1, . . . ,Σri , 1 ≤ i ≤ s, are of the same local
type (for example, we distinguish A1 from A2 points). For each original stratum we
then obtain O(1) genuine “equisingular” strata (the number of local types on a given
stratum depends on the degree of the Xi and the ambient dimension, but not on n).
With this understood, we shall no longer make the distinction between a stratification
and its genuine refinement.

2. The meaning of equisingular (for readers familiar with singularity theory).
We are considering, in general, nonversal d-parameter families of functions. As d
increases, the standard groups of equivalences for functions, such as R and K, will
quickly yield an infinite number of equisingular strata (due to the appearance of
moduli). Recall that a K-orbit consists, in general, of several R-orbits; we can only
expect for the class of quasi-homogeneous functions that the K- and R-orbits coincide
(by a result of Saito [21]). The appropriate definition of equisingular stratum, which
yields a finite number of smooth strata, therefore involves the union of K-modular
strata (minus certain exceptional strata of higher codimension).

We can now state the main result of section 6.

Proposition 6.1. For any arrangement of parametrized or implicitly defined
algebraic sets (whose degrees are bounded by some constant) in d-space consisting of
n elements of any positive codimension the following hold:

(i) Vk ⊂ Rk ⊂ Y ⊂ B, 1 ≤ k ≤ n− 1.
(ii) The size of A(Rk) and hence the number of connected regions of Rd \Rk are

bounded above by O(min(nd+k, n2d)).
(iii) The combinatorial complexity of Y2,...,2 (d twos) is Πd

j=1(n2 ) ∼ O(n2d) and
represents the “leading term” in the combinatorial complexity of A(B).

Proof. Statement (i) simply follows from the definitions of these sets. For the
proof of statements (ii) and (iii) it is convenient to distinguish generic and nongeneric
arrangements X, which are defined as follows. Let X be the space of arrangements
X ⊂ Rd of n zero-sets Xi of codimension ci of maximal degree ∆ (or of n mi-
surfaces Xi parametrized by polynomials ofdegree ≤ δ). X can be identified with
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some semialgebraic subset of the finite dimensional space of coefficients of
∑n
i=1 ci

polynomials in d variables of degree ≤ ∆ (or of nd polynomials in
∑n
i=1mi variables

of degree ≤ δ). (Note that not all choices of coefficients yield mi-dimensional real
algebraic sets Xi.) Now define W to be the union of the following sets (corresponding
to degenerate X for which Y has “excess intersection”):{

X ∈ X : ∃s ≥ 1,∃ri ≥ 2 : dimYr1,...,rs > d+ s−
s∑
i=1

ri

}
,

{
X ∈ X : ∃t ≥ 2,∃ci ≥ 1 : dimSc1,...,ct > d−

t∑
i=1

ci

}
,

andX ∈ X : ∃s, ci ≥ 1,∃t, rj ≥ 2 : dim(Sc1,...,ct ∩ Yr1,...,rs) > d+ s−
t∑
i=1

ci −
s∑
j=1

rj

 .

(Note that X denotes both a subset of Rd as well as a point of X , but the meaning
of X should be clear from the context.) One shows, using the defining equations of
these sets, that W is a Zariski closed subset of X . We shall therefore say that an
element X in X \W is generic and one in W nongeneric.

First, assume that X is generic and consider the following two stratifications of
Rd. In the first, take as strata of dimension 0 to d−1 the connected components of the
sets Yr1,...,rs , Sc1,...,ct , Sc1,...,ct ∩ Yr1,...,rs and as d-dimensional strata the connected
components in the complement of Y = Ȳ2. In the second stratification, we discard the
connected components of Yr1,...,rs that do not belong to Rk and take the connected
components of Rd \Rk as d-dimensional strata.

For the 0-dimensional maximal sets Yr1,...,rs we have, by the genericity of X, the
relation Σsi=1ri = d + s. For the 0-dimensional maximal sets Sc1,...,ct and Sc1,...,ct ∩
Yr1,...,rs we have in the worst case of hypersurface arrangements (where all ci = 1)
the relations t = d and t+ Σri = d+ s. Hence, there are at most Πs

i=1( nri ) ∼ O(nd+s)
such maximal sets, and each of them has O(1) connected components. For the first
stratification (whose union of strata of dimension less than d is Y ), the relation Σri =
d+ s, where all ri ≥ 2, implies that s ≤ d. For the second stratification (whose union
of strata of dimension < d is Rk) we have, by the definition of Rk, s ≤ min(k, d). Let
ei denote the number of i-dimensional strata. Then, for all 0 ≤ i ≤ d−1, ei ∼ O(n2d)
(for the stratification of Y ) and ei ∼ O(nmin(d+k,2d)) (for the stratification of Rk).

For statement (ii) of the proposition we now consider the second stratification.
We claim that the number ed of connected regions of Rd \Rk is also O(nmin(d+k,2d)).
Taking a 1-point compactification Sd = Rd∪{∞} and adding at most O(nmin(d+k,2d))
cells to the induced stratification of Rk in the d-sphere, we get a cell complex K whose
Euler characteristic is equal to χ(Sd) = 1 + (−1)d. Note that ed is bounded above by
the number of d-cells of K; this implies (ii).

For statement (iii), note that Y2,...,2 (with d twos) is the maximal set of the highest
combinatorial complexity in the stratification of Y satisfying the relation Σri = d+s,
and its number of connected components is of order n2d.

For nongeneric arrangements X ∈ W , we consider a “linear deformation” Xt,
t ∈ (−ε,+ε), of X = X0 such that X0 is the only nongeneric element—linear in the
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sense that t 7→ Xt defines a line in the space of coefficients which can be identified with
X . (Such a deformation can be obtained, for example, by constructing a stratification
of the semialgebraic set W and by restricting a line in the normal space of the stratum
containing X to some sufficiently small open neighborhood.) Consider the union U of
any of the semialgebraic sets Ut = Yt or (Rk)t associated to Xt; U is a semialgebraic
subset of Rd×(−ε,+ε). We claim that the combinatorial complexity of the degenerate
arrangement A(U0) is of the same order as that of its generic deformation A(Ut), for
small t 6= 0, which implies the desired bounds in the degenerate case.

The claim follows from the following argument. First, we want to check that
all strata of U0 lie in the closure of some stratum of U \ U0. Given a pair of closed,
connected subsets A,B ⊂ Rd and any point q ∈ A there exists a sphere tangent to A at
q and to B in some point q′. Let At and Bt be subsets of Xt ⊂ Rd×(−ε,+ε) such that
A0, B0 are connected subsets of X = X0. Our assumptions about the algebraic set X
imply that the dimensions of At and Bt are constant for t in some open neighborhood
I of 0 (in particular the sets remain nonempty over the reals). By the geometric
fact above, there exist points qt ∈ At and q′t ∈ Bt supporting bitangent spheres with
centers pt, such that the sets {qt : t ∈ I}, {q′t : t ∈ I}, and {pt : t ∈ I} are connected
and p0 is any point of U0. Next, let ε > 0 be small enough such that U is transverse
to all hyperplanes t = c, for any constant |c| < ε, except t = 0. (U is, in general,
a singular semialgebraic set, and transverse means that the hyperplane in question
is transverse to all the strata of a suitable stratification of U , e.g., a stratification
satisfying the Whitney condition (b). See the book by Goresky and MacPherson [13,
Part I, Chapters 1.2–1.8] for a good introduction to stratification theory.) So the
numbers of strata of dimension 0 ≤ i ≤ d in A(Ut) are locally constant for t ∈ (−ε, 0)
and t ∈ (0, ε); denote these numbers by r− and r+, respectively. Hence there are
r− + r+ strata in A(U \U0) and therefore at most that many strata of A(U0).

Remarks. 1. For compact arrangements X = ∪Xi we can define regions analogous
to the usual kth-order Voronoi regions, such that for all points within each region the
farthest k sets in the arrangement do not change. If Ṽk is the union of the boundaries
of these regions and R̃k the set analogous to Rk, except that the k smallest minimal
spheres are replaced by the k largest maximal spheres, then Proposition 6.1 above
holds for R̃k and Ṽk in place of Rk and Vk.

2. One can get a sharper bound for the (expected) size of A(Vk), where k ∼ O(1),
in the average case. Set µp(Xi) := infq∈Xi ‖q − p‖2. The sets Yr1,...,rs ∩ Rk and
(Yr1,...,rs ∩ Sc1,...,ct) ∩ Rk, s ≤ k, can only belong to Vk if the critical values of the s
Ari≥1-singularities of the distance-squared function from p ∈ Yr1,...,rs are smaller than
all but k − s ∼ O(1) of the minima µp(Xj) of the O(n) sets Xj that do not belong
to the support sets of one of these Ari≥1-singularities (for p ∈ ∩ti=1Xi, we include the
intersecting Xi in the support set). Now suppose for the moment that there exists a
“good” probability measure on the space X of arrangements (definition follows below)
such that if we pick some X = ∪Xi ∈ X “at random,” then Pr[µp(Xi) < µp(Xj)] =
1/2 (actually it is enough if this probability is different from 0 and 1). One then checks
that the probability that the critical values of all s Ari≥1-singularities are smaller than

O(n) minima µp(Xj) is O(n−s). Looking at the proof of Proposition 6.1 we now see
the following: if M sets X are picked independently from some “good” distribution
on X then, as M →∞, the expected size of A(Vk) is O(nd).

The “good” probability measures on X are defined as follows. Let Xmi denote
the space of real algebraic sets of dimension mi of some bounded degree (recall that
Xmi can be identified with a semialgebraic subset of the space of coefficients of the
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defining polynomials of such sets); then X := ×ni=1Xmi . Let Mi be a probability
measure on Xmi (for example, the uniform distribution on some compact subset B of
Xmi of bounded coefficients). We say that the collection of probability measuresMi,
1 ≤ i ≤ n, is “good” if the following hold. 1. For each pair (Mi,Mj), the Lebesgue
measure on Xmi ×Xmj is absolutely continuous with respect to the product measure
Mi ×Mj . 2. For any given p ∈ Rd and all ordered pairs i, j the sets {(Xi, Xj) :
µp(Xi) < µp(Xj)} have non-zero Lebesgue measure in Xmi ×Xmj . Conditions 1 and
2 imply that Pr[µp(Xi) < µp(Xj)] 6= 0, 1, but seem quite strong. Note, however, that
the conditions are trivially satisfied in an important special case: if all sets Xi in an
arrangement have the same dimension and are chosen from a single, but arbitrary,
distribution, then, by symmetry, Pr[µp(Xi) < µp(Xj)] = 1/2.
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