Soluble Radicals

Rebecca Waldecker

Let G be a finite group and let $\operatorname{sol}(G)$ denote the soluble radical of G, i.e. the largest normal soluble subgroup of G. Paul Flavell conjectured in 2001 that $\operatorname{sol}(G)$ coincides with the set of all elements $x \in G$ such that for any $y \in G$ the subgroup $\langle x, y\rangle$ is soluble. This conjecture has been proved by Guralnick et al. in 2006, using the Classification of Finite Simple Groups ([5]). As a first step towards a proof for this result which does not rely on the Classification, we attempt to show the following:
Theorem A. Let G be a finite group, let p be a prime and $P \in S y l_{p}(G)$. Then $P \subseteq \operatorname{sol}(G)$ if and only if $\langle P, g\rangle$ is soluble for all $g \in G$.
In the following let G be a minimal counterexample to Theorem \mathbf{A}, let p be a prime and let $P \in \operatorname{Syl}_{p}(G)$ be such that $\langle P, g\rangle$ is soluble for all $g \in G$, but P is not contained in the soluble radical of G. One of the main results so far is

Theorem B. Suppose that $C_{G}(P)$ is soluble. Let \mathcal{L} denote the set of maximal P-invariant subgroups M of G such that

- $C_{G}(P) \leq M$,
- $[O(F(M)), P] \neq 1$ and
- if possible, there exists a prime $q \in \pi(F(M))$ such that $C_{O_{q}(M)}(P)=1$.

If there exists a member $L \in \mathcal{L}$ such that $C_{F(L)}(P)$ is not cyclic, then $\mathcal{L}=\{L\}$.
In [1] it is proved that a group G is p-soluble if and only if for any Sylow p subgroup P of $G,\langle P, g\rangle$ is p-soluble for all $g \in G$. This result, together with the minimality of G, already implies some restrictions for the structure of G. Let $K:=O_{p^{\prime}}(G)$. Then it turns out that P is cyclic of order p, that $G=P K$ and that K is characteristically simple. Moreover $K=[K, P]$. Whenever $M \in И_{G}(P)$ (i.e. M is a P-invariant subgroup of G) is such that $M P<G$, then $[M, P]$ is soluble. So our attention is lead to the maximal P-invariant subgroups of G and we set
$\mathcal{M}:=\{M \leq G \mid \mathrm{M}$ is maximally P-invariant and $M P \neq G\}$.
One of the main ideas is to investigate the structure of the members of \mathcal{M} and how they relate to each other. We first observe that, if $M \in \mathcal{M}$, then $M=P(M \cap K)$. So we have the cyclic p-group P acting on the p^{\prime}-group $M \cap K$, and coprime action results apply. This yields our first starting point:

Lemma 1. Let $M \in \mathcal{M}$ be such that $P \not \pm Z(M)$. Then there exists a prime q such that $\left[O_{q}(M), P\right] \neq 1$.
As P is not central in G, we know that $C:=C_{G}(P)$ is contained in a member of \mathcal{M}. If moreover C is solube, then whenever $C \leq M \in \mathcal{M}$, it follows that C is properly contained in M and the above lemma is applicable.
In the following, we assume that C is soluble and we focus on the subset \mathcal{L} of \mathcal{M} defined in Theorem B, i.e. \mathcal{L} is the set of subgroups $M \in \mathcal{M}$ such that the following hold:
$C_{G}(P) \leq M,[O(F(M)), P] \neq 1$ and if possible, there exists a prime $q \in$ $\pi(F(M))$ such that $C_{O_{q}(M)}(P)=1$.
As mentioned above, C being soluble implies that the members of \mathcal{L} contain C properly. So the second hypothesis for \mathcal{L} is basically a statement about the prime 2 , avoiding technical difficulties. The last hypothesis also is of a purely technical nature.
When collecting information about the elements in \mathcal{L}, then, unsurprisingly, the Bender Method turns out to be very useful. We refer the reader to [4] (p. 110 et seq.) where a detailed exposition of it can be found. Very little work has to be done to make sure that the results can be applied in our context (where G is not simple!). The Bender Method can be brought into the picture because of the following result, due to Paul Flavell (Theorem 4.2 in [3]).

Pushing Down Lemma. Let $M \in \mathcal{M}$. If q is odd and if Q is a C-invariant q-subgroup of G contained in M, then $[Q, P] \leq O_{q}(M)$.

The stated version is a special case of Flavell's result, avoiding technical problems related to the prime 2 (and Fermat Primes).
To make sure that two members L_{1}, L_{2} of \mathcal{L} cannot have characteristic q for the same prime q, we apply results from [2]. In fact, this is the only place so far where the solubility of C plays a major role. Then we can successfully apply the Bender Method in order to prove uniqueness results. We start by showing that, for any $M \in \mathcal{L}$, the normaliser of certain C-invariant subgroups of $F(M)$ is contained in a unique member of \mathcal{M}.
The penultimate step is
Lemma 2. Let $M \in \mathcal{L}$, suppose that $|\pi(F(M))| \geq 2$ and that $q \in \pi$ is such that $C_{O_{q}(M)}(P)$ possesses an elementary abelian subgroup A of order q^{2}. Then $B:=C_{F(M)}(A)$ is contained in a unique member of \mathcal{M}. In particular, $C_{G}(a)$ is contained in a unique member of \mathcal{M} (namely M) for all $a \in A^{\#}$.

Theorem B follows from this by applying the Bender Method. So suppose that $L \in \mathcal{L}$ is such that $C_{F(L)}(P)$ is not cyclic. If $|\pi(F(L))| \geq 2$, then we can apply the previous lemma and obtain the result with tools related to coprime action. If $|\pi(F(L))|=1$, then the analysis is more difficult and more complicated arguments arise. The main idea is to find a replacement for the previous lemma for this configuration. Theorem \mathbf{B} can be read in a different way:
If \mathcal{L} possesses more than one element, then for all $L \in \mathcal{L}$ the subgroup $C_{F(L)}(P)$ is cyclic. The next objective is to exclude this case. Then \mathcal{L} has at most one member, and if \mathcal{L} is empty, this gives strong information about the members of \mathcal{M} containing C, hopefully leading to a contradiction.

Acknowledgments

The author wishes to thank the Leverhulme Trust for financially supporting her work on this project.

References

[1] Flavell, P.: A characterisation of p-soluble groups Bull. London Math Soc. 29 (1997), no. 2, 177-183.
[2] Flavell, P.: Primitive pairs of p-solvable groups, preprint, 2007.
[3] Flavell, P.: A new proof of the Solvable Signalizer Functor Theorem, preprint, 2007.
[4] Gorenstein, D., Lyons, R. and Solomon, R.: The Classification of the Finite Simple Groups, Number 2, Mathematical Surveys and Monographs 40.2 (American Mathematical Society, Providence, RI, 1996).
[5] Guralnick, R., Kunyavski, B., Plotkin, E., Shalev, A.: Thompson-like characterizations of the solvable radical J. Algebra 300 (2006) 363-375.

