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Let G be a finite group and let sol(G) denote the soluble radical of G, i.e. the
largest normal soluble subgroup of G. Paul Flavell conjectured in 2001 that
sol(G) coincides with the set of all elements x ∈ G such that for any y ∈ G

the subgroup 〈x, y〉 is soluble. This conjecture has been proved by Guralnick
et al. in 2006, using the Classification of Finite Simple Groups ([5]). As a first
step towards a proof for this result which does not rely on the Classification, we
attempt to show the following:

Theorem A. Let G be a finite group, let p be a prime and P ∈ Sylp(G). Then
P ⊆ sol(G) if and only if 〈P, g〉 is soluble for all g ∈ G.

In the following let G be a minimal counterexample to Theorem A, let p be a
prime and let P ∈ Sylp(G) be such that 〈P, g〉 is soluble for all g ∈ G, but P is
not contained in the soluble radical of G. One of the main results so far is

Theorem B. Suppose that CG(P ) is soluble. Let L denote the set of maximal
P -invariant subgroups M of G such that
- CG(P ) ≤ M ,
- [O(F (M)), P ] 6= 1 and
- if possible, there exists a prime q ∈ π(F (M)) such that COq(M)(P ) = 1.
If there exists a member L ∈ L such that CF (L)(P ) is not cyclic, then L = {L}.

In [1] it is proved that a group G is p-soluble if and only if for any Sylow p-
subgroup P of G, 〈P, g〉 is p-soluble for all g ∈ G. This result, together with
the minimality of G, already implies some restrictions for the structure of G.
Let K := Op′(G). Then it turns out that P is cyclic of order p , that G = PK

and that K is characteristically simple. Moreover K = [K, P ]. Whenever
M ∈ IG(P ) (i.e. M is a P -invariant subgroup of G) is such that MP < G,
then [M,P ] is soluble. So our attention is lead to the maximal P -invariant
subgroups of G and we set
M := {M ≤ G |M is maximally P -invariant and MP 6= G}.
One of the main ideas is to investigate the structure of the members of M
and how they relate to each other. We first observe that, if M ∈ M, then
M = P (M ∩ K). So we have the cyclic p-group P acting on the p′-group
M ∩K, and coprime action results apply. This yields our first starting point:

Lemma 1. Let M ∈ M be such that P � Z(M). Then there exists a prime q

such that [Oq(M), P ] 6= 1.

As P is not central in G, we know that C := CG(P ) is contained in a member
of M. If moreover C is solube, then whenever C ≤ M ∈ M, it follows that C

is properly contained in M and the above lemma is applicable.
In the following, we assume that C is soluble and we focus on the subset L of
M defined in Theorem B, i.e. L is the set of subgroups M ∈ M such that the
following hold:
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CG(P ) ≤ M , [O(F (M)), P ] 6= 1 and if possible, there exists a prime q ∈
π(F (M)) such that COq(M)(P ) = 1.
As mentioned above, C being soluble implies that the members of L contain
C properly. So the second hypothesis for L is basically a statement about the
prime 2, avoiding technical difficulties. The last hypothesis also is of a purely
technical nature.
When collecting information about the elements in L, then, unsurprisingly, the
Bender Method turns out to be very useful. We refer the reader to [4] (p.110
et seq.) where a detailed exposition of it can be found. Very little work has to
be done to make sure that the results can be applied in our context (where G

is not simple!). The Bender Method can be brought into the picture because of
the following result, due to Paul Flavell (Theorem 4.2 in [3]).

Pushing Down Lemma. Let M ∈ M. If q is odd and if Q is a C-invariant
q-subgroup of G contained in M , then [Q,P ] ≤ Oq(M).

The stated version is a special case of Flavell’s result, avoiding technical prob-
lems related to the prime 2 (and Fermat Primes).
To make sure that two members L1, L2 of L cannot have characteristic q for the
same prime q, we apply results from [2]. In fact, this is the only place so far
where the solubility of C plays a major role. Then we can successfully apply
the Bender Method in order to prove uniqueness results. We start by showing
that, for any M ∈ L, the normaliser of certain C-invariant subgroups of F (M)
is contained in a unique member of M.
The penultimate step is

Lemma 2. Let M ∈ L, suppose that |π(F (M))| ≥ 2 and that q ∈ π is such
that COq(M)(P ) possesses an elementary abelian subgroup A of order q2. Then
B := CF (M)(A) is contained in a unique member of M. In particular, CG(a)
is contained in a unique member of M (namely M) for all a ∈ A#.

Theorem B follows from this by applying the Bender Method. So suppose that
L ∈ L is such that CF (L)(P ) is not cyclic. If |π(F (L))| ≥ 2, then we can
apply the previous lemma and obtain the result with tools related to coprime
action. If |π(F (L))| = 1, then the analysis is more difficult and more complicated
arguments arise. The main idea is to find a replacement for the previous lemma
for this configuration. Theorem B can be read in a different way:
If L possesses more than one element, then for all L ∈ L the subgroup CF (L)(P )
is cyclic. The next objective is to exclude this case. Then L has at most one
member, and if L is empty, this gives strong information about the members of
M containing C, hopefully leading to a contradiction.
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