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Abstract

It is well known that if an elementary abelian p-group P acts on a p′-group Q and
Q = [Q,P ], then Q = 〈[CQ(A), P ] | A ≤ P of index p〉. Does a similar statement
hold for CQ(P ) ? Under further assumptions, the answer is yes. Goldschmidt proves
theorems of this flavour in [1] and [2] and uses them to construct signalizer functors.
For the same reason we prove a result of this type, under the assumption that Q is
soluble.
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1 Preliminaries

We collect a few results about coprime action. These are well known and can
be found in group theory books, for example in [3], Chapter 8. Throughout this
paper, all groups are supposed to be finite and we follow standard notation
(e.g. [3]).

Coprime Action

Let π be a set of primes and let P be a π-group which acts on a π′-group
G. Let p be a prime. For any elementary abelian p-group P , we denote by
Hyp(P ) and Hyp2(P ) the set of all the subgroups of P of index p and p2,
respectively. We refer to the elements of Hyp(P ) as hyperplanes of P .

(i) If N is a P -invariant normal subgroup of G, then CG/N(P ) = CG(P )N/N .
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(ii) We have G = [G,P ]CG(P ) and [G,P ] = [G,P, P ]. If G is abelian, then
G = [G,P ]× CG(P ).

(iii) Suppose that G is the product of two P -invariant subgroups G1 and G2.
Then CG(P ) = CG1(P )CG2(P ).

(iv) If P is an elementary abelian p-group, then G = 〈CG(A) | A ∈ Hyp(P )〉
and [G,P ] = 〈[CG(A), P ] | A ∈ Hyp(P )〉.

2 A theorem about coprime action

Theorem

Let p be a prime. Suppose that the central product AA0 acts coprimely on the
soluble group G with G = [G,A0], where A is an elementary abelian p-group
of rank at least 3. Furthermore, let B ≤ A and H := CG(A0B). Then

H = 〈[CG(X), A0] ∩H | X ∈ Hyp2(A)〉 .

Proof. Let G be a minimal counterexample and set

H0 := 〈[CG(X), A0] ∩H | X ∈ Hyp2(A)〉.

We note that G is not abelian because otherwise G = [G,A0] × CG(A0) by
Coprime Action (ii). This implies that CG(A0) ≤ G′ since the factor group
G/G′ is abelian.

Now let R be a maximal AA0-invariant subgroup of G containing G′, so that
R£G, and let R0 := [R, A0]. We note that CG(A0) ≤ G′ ≤ R and by Coprime
Action (ii), therefore, R = R0CG(A0). Coprime Action (iv) implies that we
can find a hyperplane Y of A such that G = RCG(Y ). As G = [G,A0], the
subgroup U := [CG(Y ), A0] is not contained in R. Now U is AA0-invariant
and so G = RU . Let N be a minimal AA0-invariant normal subgroup of G.

We proceed towards a contradiction in small steps.

(1) G = 〈R0, U〉.
Proof. We have G = RU = CG(A0)〈R0, U〉. As 〈R0, U〉 is A0-invariant,
this gives G = [G,A0] = [CG(A0)〈R0, U〉, A0] = [〈R0, U〉, A0] ≤ 〈R0, U〉.

(2) H = H0(H ∩N).

Proof. The minimality of G implies that the theorem holds in the factor
group G/N . Hence HN/N = 〈[CG/N(X), A0] ∩HN/N | X ∈ Hyp2(A)〉.
Using Coprime Action (i) and (iii) and the fact that the theorem holds in
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G/N , we obtain HN/N = H0N/N . Now HN = H0N and the statement
holds by Dedekind’s Law.

(3) Suppose that V = [V,A0] is a proper A-invariant subgroup of G. Then
N � V . If V £ G, then V ∩N = 1.

Proof. The theorem holds in V and therefore H ∩ V ≤ H0. If N is con-
tained in V then H∩N ≤ H∩V ≤ H0 contradicting (2) together with the
fact that G is a counterexample. If V is normal in G, it follows V ∩N = 1
by the minimal choice of N .

(4) Suppose that D is an AA0-invariant normal subgroup of G and that
D � Z(G). Then
(i) G = R0D or G = UD.
(ii) D is not a minimal AA0-invariant normal subgroup.

Proof. Let L := [D,R0][D, U ]. Then the hypothesis and (1) yield 1 6=
L £ G and therefore without loss N ≤ L. By Coprime Action (iii) we
have L ∩H = CL(A0B) = C[D,R0](A0B)C[D,U ](A0B).

Assume that R0D 6= G 6= UD. Then D1 := [R0D, A0] is a proper AA0-
invariant subgroup of G which means H∩D1 ≤ H0. Now R0 = [R0, A0] ≤
D1 £ R0D and it follows [R0, D] ≤ [R0, R0D] ≤ D1. Therefore we have
[R0, D] ∩ H ≤ D1 ∩ H ≤ H0 and similarly [U,D] ∩ H ≤ H0. But
as N ∩ H ≤ L ∩ H = C[D,R0](A0B)C[D,U ](A0B), this implies N ∩ H ≤
([R0, D] ∩ H)([U,D] ∩ H) ≤ H0 contradicting (2). As a consequence
we have G = R0D or G = UD as stated.

To prove (ii), suppose that D is minimal. Then since G is soluble, D
is elementary abelian and by (i) we have two cases to consider:

If G = R0D, then R = R0(D∩R) by Dedekind’s Law. The minimality
of D implies R = R0 or R = R0D = G. Both cases lead to a contradiction.

If G = UD, we recall that U centralises a hyperplane Y of A. Applying
Coprime Action (iv), we can also find a hyperplane YD of Y such that
CD(YD) 6= 1. But CD(YD) £ UD = G and then, by minimality, D cen-
tralises YD. Now YD ∈ Hyp2(A) is centralised by all of G which is not
possible since G is a counterexample.

(5) N ≤ Z(G) ≤ H.

Proof. For the first inclusion, we assume that N � Z(G) and apply
(4)(ii). This immediately yields a contradiction. Now all the subgroups of
N are normal in G which implies H ∩N = N or H ∩N = 1. The second
case is not possible by (2). Thus N ≤ H. Applying Coprime Action (ii)
to the action of A0B on Z(G) yields Z(G) = [Z(G), A0B]×CZ(G)(A0B).
Since N is contained in the second factor, we obtain [Z(G), A0B] = 1
(otherwise N could be chosen in [Z(G), A0B]) and finally Z(G) ≤ H.

We note that Z(G) ∩ R0 = 1 because otherwise N could be chosen in
Z(G) ∩R0 contradicting (3).
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Now we choose M £ G to be AA0-invariant, contained in R and such
that M/Z(G) is a minimal AA0-invariant normal subgroup of G/Z(G).

(6) G = UM , [M, A0] 6= 1 and M is abelian.

Proof. By choice, M � Z(G) and thus the first statement follows from
(4)(i) and the fact that R0M ≤ R 6= G.

Since M/Z(G) is elementary abelian, M is nilpotent. First assume
that [M,A0] = 1. Then [A0,M, G] = 1 = [M,G, A0] and hence [G,M ] =
[G,A0,M ] = 1 by the 3-Subgroups-Lemma, a contradiction. Now 1 6=
[M, A0] ≤ M ∩R0 and therefore M ∩R0 is a nontrivial normal subgroup
of M . This implies that M ∩R0∩Z(M) 6= 1 because M is nilpotent, and
in particular Z(M) ∩R0 6= 1.

Assume that Z(M) ∩R0 ≤ Z(G). Then Z(M) ∩R0 ≤ Z(G) ∩R0 = 1,
a contradiction (see above). So Z(M)∩R0 is not contained in Z(G) and
in particular 1 6= Z(M) � Z(G). The choice of M forces Z(M) = M .

(7) G centralises a subgroup of A of index p2.

Proof. We recall that U centralises a hyperplane Y of A. Now Coprime
Action (iv), applied to the action of Y on M/Z(G), gives a hyperplane YM

of Y such that CM/Z(G)(YM) 6= 1. Since, by (6), M is abelian, this forces
[M, YM ] < M . But G = UM implies that [M, YM ] is normal in G. By
the minimal choice of M , we have [M,YM ] ≤ Z(G). With X := Y ∩ YM ,
we see [G,X] = [UM,X] = [M, X] ≤ Z(G) and therefore [X, G, A0] ≤
[Z(G), A0] = 1. But [A0, X,G] = 1 and then the 3-Subgroups-Lemma
yields [G,X] = [G,A0, X] = 1. By definition X has index p2 in A.

Now (7) contradicts the fact that G is a counterexample. This final
contradiction proves the theorem.

A natural way to generalise the above theorem is to try and replace Hyp2(A)
by Hyp(A). However, this more general version does not hold, as the following
example illustrates:

Let p, q and r be primes such that p divides r − 1 and q − 1 is divisible by
both r and p. This choice is possible, e.g. p = 3, r = 7 and q = 43. Then let
R be a cyclic group of order r and suppose that the cyclic group P of order p
acts non-trivially on R. Moreover let V be a p-dimensional vectorspace over
GF (q) such that R and P act on V , V = [V, R] and dim(CV (P )) = 1. These
choices are possible because of the particular way we picked the primes. We set
G := V R. Now since R = [R, P ] ≤ [G,P ]£G, we have 〈RG〉 ≤ [G,P ]. On the
other hand, it follows V = [V,R] ≤ 〈RG〉 ≤ [G,P ] and therefore G = [G,P ].
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Next we construct an elementary abelian p-group A which acts on G. We
understand PR as a subgroup of GL(V ) and let Z be a cyclic group of order p
of Z(GL(V )). Then Z centralises PR and acts as a non-trivial group of scalar
automorphisms on V . Finally let U be a cyclic group of order p centralising
Z, P , R and V . Set A0 := P , A := U × Z × A0 and B = 1. Now A is an
elementary abelian group of order p3 and the central product AA0 = A acts
coprimely on the soluble p′-group G. As we have seen above, [G,A0] = G. Let
H := CG(A0B) = CG(A0). Then we show

〈[CG(X), A0] ∩H | X ∈ Hyp(A)〉 = 1.

(But clearly H 6= 1.)

Assume that there exists an X ∈ Hyp(A) such that [CG(X), A0]∩H 6= 1. Then
in particular [CG(X), A0] 6= 1 and thus A0 � X. This implies A = X × A0

and it follows that [CG(X), A0] ∩ H ≤ CG(X) ∩ CG(A0) ≤ CG(A). But by
construction CG(A) = 1, a contradiction.
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