A theorem about coprime action *

Rebecca Waldecker

School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK

Abstract

It is well known that if an elementary abelian p-group P acts on a p'-group Q and Q = [Q, P], then $Q = \langle [C_Q(A), P] \mid A \leq P$ of index $p \rangle$. Does a similar statement hold for $C_Q(P)$? Under further assumptions, the answer is yes. Goldschmidt proves theorems of this flavour in [1] and [2] and uses them to construct signalizer functors. For the same reason we prove a result of this type, under the assumption that Q is soluble.

Key words: finite groups, coprime action *PACS:* 02.20.a

1 Preliminaries

We collect a few results about coprime action. These are well known and can be found in group theory books, for example in [3], Chapter 8. Throughout this paper, all groups are supposed to be finite and we follow standard notation (e.g. [3]).

Coprime Action

Let π be a set of primes and let P be a π -group which acts on a π' -group G. Let p be a prime. For any elementary abelian p-group P, we denote by Hyp(P) and $Hyp^2(P)$ the set of all the subgroups of P of index p and p^2 , respectively. We refer to the elements of Hyp(P) as hyperplanes of P.

(i) If N is a P-invariant normal subgroup of G, then $C_{G/N}(P) = C_G(P)N/N$.

^{*} This research was supported by the Studienstiftung des deutschen Volkes. Email address: R.Waldecker@bham.ac.uk (Rebecca Waldecker). URL: web.mat.bham.ac.uk/R.Waldecker (Rebecca Waldecker).

- (ii) We have $G = [G, P]C_G(P)$ and [G, P] = [G, P, P]. If G is abelian, then $G = [G, P] \times C_G(P)$.
- (iii) Suppose that G is the product of two P-invariant subgroups G_1 and G_2 . Then $C_G(P) = C_{G_1}(P)C_{G_2}(P)$.
- (iv) If P is an elementary abelian p-group, then $G = \langle C_G(A) \mid A \in Hyp(P) \rangle$ and $[G, P] = \langle [C_G(A), P] \mid A \in Hyp(P) \rangle$.

2 A theorem about coprime action

Theorem

Let p be a prime. Suppose that the central product AA_0 acts coprimely on the soluble group G with $G = [G, A_0]$, where A is an elementary abelian p-group of rank at least 3. Furthermore, let $B \leq A$ and $H := C_G(A_0B)$. Then

$$H = \langle [C_G(X), A_0] \cap H \mid X \in Hyp^2(A) \rangle .$$

Proof. Let G be a minimal counterexample and set

$$H_0 := \langle [C_G(X), A_0] \cap H \mid X \in Hyp^2(A) \rangle.$$

We note that G is not abelian because otherwise $G = [G, A_0] \times C_G(A_0)$ by Coprime Action (ii). This implies that $C_G(A_0) \leq G'$ since the factor group G/G' is abelian.

Now let R be a maximal AA_0 -invariant subgroup of G containing G', so that $R \leq G$, and let $R_0 := [R, A_0]$. We note that $C_G(A_0) \leq G' \leq R$ and by Coprime Action (ii), therefore, $R = R_0C_G(A_0)$. Coprime Action (iv) implies that we can find a hyperplane Y of A such that $G = RC_G(Y)$. As $G = [G, A_0]$, the subgroup $U := [C_G(Y), A_0]$ is not contained in R. Now U is AA_0 -invariant and so G = RU. Let N be a minimal AA_0 -invariant normal subgroup of G.

We proceed towards a contradiction in small steps.

(1) $G = \langle R_0, U \rangle$.

Proof. We have $G = RU = C_G(A_0)\langle R_0, U \rangle$. As $\langle R_0, U \rangle$ is A_0 -invariant, this gives $G = [G, A_0] = [C_G(A_0)\langle R_0, U \rangle, A_0] = [\langle R_0, U \rangle, A_0] \leq \langle R_0, U \rangle$.

(2) $H = H_0(H \cap N)$.

Proof. The minimality of G implies that the theorem holds in the factor group G/N. Hence $HN/N = \langle [C_{G/N}(X), A_0] \cap HN/N \mid X \in Hyp^2(A) \rangle$. Using Coprime Action (i) and (iii) and the fact that the theorem holds in

G/N, we obtain $HN/N = H_0N/N$. Now $HN = H_0N$ and the statement holds by Dedekind's Law.

(3) Suppose that $V = [V, A_0]$ is a proper A-invariant subgroup of G. Then $N \nleq V$. If $V \trianglelefteq G$, then $V \cap N = 1$.

Proof. The theorem holds in V and therefore $H \cap V \leq H_0$. If N is contained in V then $H \cap N \leq H \cap V \leq H_0$ contradicting (2) together with the fact that G is a counterexample. If V is normal in G, it follows $V \cap N = 1$ by the minimal choice of N.

- (4) Suppose that D is an AA_0 -invariant normal subgroup of G and that $D \nleq Z(G)$. Then
 - (i) $G = R_0 D$ or G = U D.
 - (ii) D is not a minimal AA_0 -invariant normal subgroup.

Proof. Let $L := [D, R_0][D, U]$. Then the hypothesis and (1) yield $1 \neq L \trianglelefteq G$ and therefore without loss $N \le L$. By Coprime Action (iii) we have $L \cap H = C_L(A_0B) = C_{[D,R_0]}(A_0B)C_{[D,U]}(A_0B)$.

Assume that $R_0D \neq G \neq UD$. Then $D_1 := [R_0D, A_0]$ is a proper AA_0 invariant subgroup of G which means $H \cap D_1 \leq H_0$. Now $R_0 = [R_0, A_0] \leq D_1 \leq R_0D$ and it follows $[R_0, D] \leq [R_0, R_0D] \leq D_1$. Therefore we have $[R_0, D] \cap H \leq D_1 \cap H \leq H_0$ and similarly $[U, D] \cap H \leq H_0$. But as $N \cap H \leq L \cap H = C_{[D,R_0]}(A_0B)C_{[D,U]}(A_0B)$, this implies $N \cap H \leq ([R_0, D] \cap H)([U, D] \cap H) \leq H_0$ contradicting (2). As a consequence we have $G = R_0D$ or G = UD as stated.

To prove (ii), suppose that D is minimal. Then since G is soluble, D is elementary abelian and by (i) we have two cases to consider:

If $G = R_0 D$, then $R = R_0 (D \cap R)$ by Dedekind's Law. The minimality of D implies $R = R_0$ or $R = R_0 D = G$. Both cases lead to a contradiction.

If G = UD, we recall that U centralises a hyperplane Y of A. Applying Coprime Action (iv), we can also find a hyperplane Y_D of Y such that $C_D(Y_D) \neq 1$. But $C_D(Y_D) \leq UD = G$ and then, by minimality, D centralises Y_D . Now $Y_D \in Hyp^2(A)$ is centralised by all of G which is not possible since G is a counterexample. \Box

(5) $N \leq Z(G) \leq H$.

Proof. For the first inclusion, we assume that $N \nleq Z(G)$ and apply (4)(ii). This immediately yields a contradiction. Now all the subgroups of N are normal in G which implies $H \cap N = N$ or $H \cap N = 1$. The second case is not possible by (2). Thus $N \leq H$. Applying Coprime Action (ii) to the action of A_0B on Z(G) yields $Z(G) = [Z(G), A_0B] \times C_{Z(G)}(A_0B)$. Since N is contained in the second factor, we obtain $[Z(G), A_0B] = 1$ (otherwise N could be chosen in $[Z(G), A_0B]$) and finally $Z(G) \leq H$. \Box

We note that $Z(G) \cap R_0 = 1$ because otherwise N could be chosen in $Z(G) \cap R_0$ contradicting (3).

Now we choose $M \leq G$ to be AA_0 -invariant, contained in R and such that M/Z(G) is a minimal AA_0 -invariant normal subgroup of G/Z(G).

(6) G = UM, $[M, A_0] \neq 1$ and M is abelian.

Proof. By choice, $M \nleq Z(G)$ and thus the first statement follows from (4)(i) and the fact that $R_0 M \leq R \neq G$.

Since M/Z(G) is elementary abelian, M is nilpotent. First assume that $[M, A_0] = 1$. Then $[A_0, M, G] = 1 = [M, G, A_0]$ and hence $[G, M] = [G, A_0, M] = 1$ by the 3-Subgroups-Lemma, a contradiction. Now $1 \neq [M, A_0] \leq M \cap R_0$ and therefore $M \cap R_0$ is a nontrivial normal subgroup of M. This implies that $M \cap R_0 \cap Z(M) \neq 1$ because M is nilpotent, and in particular $Z(M) \cap R_0 \neq 1$.

Assume that $Z(M) \cap R_0 \leq Z(G)$. Then $Z(M) \cap R_0 \leq Z(G) \cap R_0 = 1$, a contradiction (see above). So $Z(M) \cap R_0$ is not contained in Z(G) and in particular $1 \neq Z(M) \nleq Z(G)$. The choice of M forces Z(M) = M. \Box

(7) G centralises a subgroup of A of index p^2 .

Proof. We recall that U centralises a hyperplane Y of A. Now Coprime Action (iv), applied to the action of Y on M/Z(G), gives a hyperplane Y_M of Y such that $C_{M/Z(G)}(Y_M) \neq 1$. Since, by (6), M is abelian, this forces $[M, Y_M] < M$. But G = UM implies that $[M, Y_M]$ is normal in G. By the minimal choice of M, we have $[M, Y_M] \leq Z(G)$. With $X := Y \cap Y_M$, we see $[G, X] = [UM, X] = [M, X] \leq Z(G)$ and therefore $[X, G, A_0] \leq$ $[Z(G), A_0] = 1$. But $[A_0, X, G] = 1$ and then the 3-Subgroups-Lemma yields $[G, X] = [G, A_0, X] = 1$. By definition X has index p^2 in A. \Box

Now (7) contradicts the fact that G is a counterexample. This final contradiction proves the theorem.

A natural way to generalise the above theorem is to try and replace $Hyp^2(A)$ by Hyp(A). However, this more general version does not hold, as the following example illustrates:

Let p, q and r be primes such that p divides r-1 and q-1 is divisible by both r and p. This choice is possible, e.g. p = 3, r = 7 and q = 43. Then let R be a cyclic group of order r and suppose that the cyclic group P of order pacts non-trivially on R. Moreover let V be a p-dimensional vectorspace over GF(q) such that R and P act on V, V = [V, R] and $\dim(C_V(P)) = 1$. These choices are possible because of the particular way we picked the primes. We set G := VR. Now since $R = [R, P] \leq [G, P] \leq G$, we have $\langle R^G \rangle \leq [G, P]$. On the other hand, it follows $V = [V, R] \leq \langle R^G \rangle \leq [G, P]$ and therefore G = [G, P]. Next we construct an elementary abelian *p*-group A which acts on G. We understand PR as a subgroup of GL(V) and let Z be a cyclic group of order pof Z(GL(V)). Then Z centralises PR and acts as a non-trivial group of scalar automorphisms on V. Finally let U be a cyclic group of order p centralising Z, P, R and V. Set $A_0 := P$, $A := U \times Z \times A_0$ and B = 1. Now A is an elementary abelian group of order p^3 and the central product $AA_0 = A$ acts coprimely on the soluble p'-group G. As we have seen above, $[G, A_0] = G$. Let $H := C_G(A_0B) = C_G(A_0)$. Then we show

$$\langle [C_G(X), A_0] \cap H \mid X \in Hyp(A) \rangle = 1.$$

(But clearly $H \neq 1$.)

Assume that there exists an $X \in Hyp(A)$ such that $[C_G(X), A_0] \cap H \neq 1$. Then in particular $[C_G(X), A_0] \neq 1$ and thus $A_0 \notin X$. This implies $A = X \times A_0$ and it follows that $[C_G(X), A_0] \cap H \leq C_G(X) \cap C_G(A_0) \leq C_G(A)$. But by construction $C_G(A) = 1$, a contradiction.

Acknowledgements

This article is based on a part of my PhD thesis, and I would like to thank my supervisor and teacher Helmut Bender for his advice. Also I would like to thank Paul Flavell for pointing out the above example to me.

References

- [1] Goldschmidt, D.M.: Weakly embedded 2-local subgroups of finite groups, *J. Algebra* **21** (1972), 341-351.
- [2] Goldschmidt, D.M.: Strongly closed 2-subgroups of finite groups, Ann. of Math. II **102** (1975), 475-489.
- [3] Kurzweil, H., Stellmacher B.: *The Theory of Finite Groups.* Springer 2004.