A theorem about coprime action ${ }^{\star}$

Rebecca Waldecker
School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK

Abstract

It is well known that if an elementary abelian p-group P acts on a p^{\prime}-group Q and $Q=[Q, P]$, then $Q=\left\langle\left[C_{Q}(A), P\right]\right| A \leq P$ of index $\left.p\right\rangle$. Does a similar statement hold for $C_{Q}(P)$? Under further assumptions, the answer is yes. Goldschmidt proves theorems of this flavour in [1] and [2] and uses them to construct signalizer functors. For the same reason we prove a result of this type, under the assumption that Q is soluble.

Key words: finite groups, coprime action
PACS: 02.20.a

1 Preliminaries

We collect a few results about coprime action. These are well known and can be found in group theory books, for example in [3], Chapter 8. Throughout this paper, all groups are supposed to be finite and we follow standard notation (e.g. [3]).

Coprime Action

Let π be a set of primes and let P be a π-group which acts on a π^{\prime}-group G. Let p be a prime. For any elementary abelian p-group P, we denote by $H y p(P)$ and $H y p^{2}(P)$ the set of all the subgroups of P of index p and p^{2}, respectively. We refer to the elements of $\operatorname{Hyp}(P)$ as hyperplanes of P.
(i) If N is a P-invariant normal subgroup of G, then $C_{G / N}(P)=C_{G}(P) N / N$.

[^0](ii) We have $G=[G, P] C_{G}(P)$ and $[G, P]=[G, P, P]$. If G is abelian, then $G=[G, P] \times C_{G}(P)$.
(iii) Suppose that G is the product of two P-invariant subgroups G_{1} and G_{2}. Then $C_{G}(P)=C_{G_{1}}(P) C_{G_{2}}(P)$.
(iv) If P is an elementary abelian p-group, then $G=\left\langle C_{G}(A) \mid A \in H y p(P)\right\rangle$ and $[G, P]=\left\langle\left[C_{G}(A), P\right] \mid A \in \operatorname{Hyp}(P)\right\rangle$.

2 A theorem about coprime action

Theorem

Let p be a prime. Suppose that the central product $A A_{0}$ acts coprimely on the soluble group G with $G=\left[G, A_{0}\right]$, where A is an elementary abelian p-group of rank at least 3 . Furthermore, let $B \leq A$ and $H:=C_{G}\left(A_{0} B\right)$. Then

$$
H=\left\langle\left[C_{G}(X), A_{0}\right] \cap H \mid X \in H y p^{2}(A)\right\rangle .
$$

Proof. Let G be a minimal counterexample and set

$$
H_{0}:=\left\langle\left[C_{G}(X), A_{0}\right] \cap H \mid X \in H y p^{2}(A)\right\rangle .
$$

We note that G is not abelian because otherwise $G=\left[G, A_{0}\right] \times C_{G}\left(A_{0}\right)$ by Coprime Action (ii). This implies that $C_{G}\left(A_{0}\right) \leq G^{\prime}$ since the factor group G / G^{\prime} is abelian.

Now let R be a maximal $A A_{0}$-invariant subgroup of G containing G^{\prime}, so that $R \unlhd G$, and let $R_{0}:=\left[R, A_{0}\right]$. We note that $C_{G}\left(A_{0}\right) \leq G^{\prime} \leq R$ and by Coprime Action (ii), therefore, $R=R_{0} C_{G}\left(A_{0}\right)$. Coprime Action (iv) implies that we can find a hyperplane Y of A such that $G=R C_{G}(Y)$. As $G=\left[G, A_{0}\right]$, the subgroup $U:=\left[C_{G}(Y), A_{0}\right]$ is not contained in R. Now U is $A A_{0}$-invariant and so $G=R U$. Let N be a minimal $A A_{0}$-invariant normal subgroup of G.

We proceed towards a contradiction in small steps.
(1) $G=\left\langle R_{0}, U\right\rangle$.

Proof. We have $G=R U=C_{G}\left(A_{0}\right)\left\langle R_{0}, U\right\rangle$. As $\left\langle R_{0}, U\right\rangle$ is A_{0}-invariant, this gives $G=\left[G, A_{0}\right]=\left[C_{G}\left(A_{0}\right)\left\langle R_{0}, U\right\rangle, A_{0}\right]=\left[\left\langle R_{0}, U\right\rangle, A_{0}\right] \leq\left\langle R_{0}, U\right\rangle$.
(2) $H=H_{0}(H \cap N)$.

Proof. The minimality of G implies that the theorem holds in the factor group G / N. Hence $H N / N=\left\langle\left[C_{G / N}(X), A_{0}\right] \cap H N / N \mid X \in H_{y p}{ }^{2}(A)\right\rangle$. Using Coprime Action (i) and (iii) and the fact that the theorem holds in
G / N, we obtain $H N / N=H_{0} N / N$. Now $H N=H_{0} N$ and the statement holds by Dedekind's Law.
(3) Suppose that $V=\left[V, A_{0}\right]$ is a proper A-invariant subgroup of G. Then $N \not \leq V$. If $V \unlhd G$, then $V \cap N=1$.

Proof. The theorem holds in V and therefore $H \cap V \leq H_{0}$. If N is contained in V then $H \cap N \leq H \cap V \leq H_{0}$ contradicting (2) together with the fact that G is a counterexample. If V is normal in G, it follows $V \cap N=1$ by the minimal choice of N.
(4) Suppose that D is an $A A_{0}$-invariant normal subgroup of G and that $D \not \leq Z(G)$. Then
(i) $G=R_{0} D$ or $G=U D$.
(ii) D is not a minimal $A A_{0}$-invariant normal subgroup.

Proof. Let $L:=\left[D, R_{0}\right][D, U]$. Then the hypothesis and (1) yield $1 \neq$ $L \unlhd G$ and therefore without loss $N \leq L$. By Coprime Action (iii) we have $L \cap H=C_{L}\left(A_{0} B\right)=C_{\left[D, R_{0}\right]}\left(A_{0} B\right) C_{[D, U]}\left(A_{0} B\right)$.

Assume that $R_{0} D \neq G \neq U D$. Then $D_{1}:=\left[R_{0} D, A_{0}\right]$ is a proper $A A_{0}-$ invariant subgroup of G which means $H \cap D_{1} \leq H_{0}$. Now $R_{0}=\left[R_{0}, A_{0}\right] \leq$ $D_{1} \unlhd R_{0} D$ and it follows $\left[R_{0}, D\right] \leq\left[R_{0}, R_{0} D\right] \leq D_{1}$. Therefore we have $\left[R_{0}, D\right] \cap H \leq D_{1} \cap H \leq H_{0}$ and similarly $[U, D] \cap H \leq H_{0}$. But as $N \cap H \leq L \cap H=C_{\left[D, R_{0}\right]}\left(A_{0} B\right) C_{[D, U]}\left(A_{0} B\right)$, this implies $N \cap H \leq$ $\left(\left[R_{0}, D\right] \cap H\right)([U, D] \cap H) \leq H_{0}$ contradicting (2). As a consequence we have $G=R_{0} D$ or $G=U D$ as stated.

To prove (ii), suppose that D is minimal. Then since G is soluble, D is elementary abelian and by (i) we have two cases to consider:

If $G=R_{0} D$, then $R=R_{0}(D \cap R)$ by Dedekind's Law. The minimality of D implies $R=R_{0}$ or $R=R_{0} D=G$. Both cases lead to a contradiction.

If $G=U D$, we recall that U centralises a hyperplane Y of A. Applying Coprime Action (iv), we can also find a hyperplane Y_{D} of Y such that $C_{D}\left(Y_{D}\right) \neq 1$. But $C_{D}\left(Y_{D}\right) \unlhd U D=G$ and then, by minimality, D centralises Y_{D}. Now $Y_{D} \in \operatorname{Hyp}^{2}(A)$ is centralised by all of G which is not possible since G is a counterexample.
(5) $N \leq Z(G) \leq H$.

Proof. For the first inclusion, we assume that $N \not \leq Z(G)$ and apply (4)(ii). This immediately yields a contradiction. Now all the subgroups of N are normal in G which implies $H \cap N=N$ or $H \cap N=1$. The second case is not possible by (2). Thus $N \leq H$. Applying Coprime Action (ii) to the action of $A_{0} B$ on $Z(G)$ yields $Z(G)=\left[Z(G), A_{0} B\right] \times C_{Z(G)}\left(A_{0} B\right)$. Since N is contained in the second factor, we obtain $\left[Z(G), A_{0} B\right]=1$ (otherwise N could be chosen in $\left[Z(G), A_{0} B\right]$) and finally $Z(G) \leq H$.

We note that $Z(G) \cap R_{0}=1$ because otherwise N could be chosen in $Z(G) \cap R_{0}$ contradicting (3).

Now we choose $M \unlhd G$ to be $A A_{0}$-invariant, contained in R and such that $M / Z(G)$ is a minimal $A A_{0}$-invariant normal subgroup of $G / Z(G)$.
(6) $G=U M,\left[M, A_{0}\right] \neq 1$ and M is abelian.

Proof. By choice, $M \not \leq Z(G)$ and thus the first statement follows from (4)(i) and the fact that $R_{0} M \leq R \neq G$.

Since $M / Z(G)$ is elementary abelian, M is nilpotent. First assume that $\left[M, A_{0}\right]=1$. Then $\left[A_{0}, M, G\right]=1=\left[M, G, A_{0}\right]$ and hence $[G, M]=$ $\left[G, A_{0}, M\right]=1$ by the 3 -Subgroups-Lemma, a contradiction. Now $1 \neq$ $\left[M, A_{0}\right] \leq M \cap R_{0}$ and therefore $M \cap R_{0}$ is a nontrivial normal subgroup of M. This implies that $M \cap R_{0} \cap Z(M) \neq 1$ because M is nilpotent, and in particular $Z(M) \cap R_{0} \neq 1$.

Assume that $Z(M) \cap R_{0} \leq Z(G)$. Then $Z(M) \cap R_{0} \leq Z(G) \cap R_{0}=1$, a contradiction (see above). So $Z(M) \cap R_{0}$ is not contained in $Z(G)$ and in particular $1 \neq Z(M) \not \leq Z(G)$. The choice of M forces $Z(M)=M$.
(7) G centralises a subgroup of A of index p^{2}.

Proof. We recall that U centralises a hyperplane Y of A. Now Coprime Action (iv), applied to the action of Y on $M / Z(G)$, gives a hyperplane Y_{M} of Y such that $C_{M / Z(G)}\left(Y_{M}\right) \neq 1$. Since, by (6), M is abelian, this forces $\left[M, Y_{M}\right]<M$. But $G=U M$ implies that $\left[M, Y_{M}\right]$ is normal in G. By the minimal choice of M, we have $\left[M, Y_{M}\right] \leq Z(G)$. With $X:=Y \cap Y_{M}$, we see $[G, X]=[U M, X]=[M, X] \leq Z(G)$ and therefore $\left[X, G, A_{0}\right] \leq$ $\left[Z(G), A_{0}\right]=1$. But $\left[A_{0}, X, G\right]=1$ and then the 3-Subgroups-Lemma yields $[G, X]=\left[G, A_{0}, X\right]=1$. By definition X has index p^{2} in A.

Now (7) contradicts the fact that G is a counterexample. This final contradiction proves the theorem.

A natural way to generalise the above theorem is to try and replace $H y p^{2}(A)$ by $\operatorname{Hyp}(A)$. However, this more general version does not hold, as the following example illustrates:

Let p, q and r be primes such that p divides $r-1$ and $q-1$ is divisible by both r and p. This choice is possible, e.g. $p=3, r=7$ and $q=43$. Then let R be a cyclic group of order r and suppose that the cyclic group P of order p acts non-trivially on R. Moreover let V be a p-dimensional vectorspace over $G F(q)$ such that R and P act on $V, V=[V, R]$ and $\operatorname{dim}\left(C_{V}(P)\right)=1$. These choices are possible because of the particular way we picked the primes. We set $G:=V R$. Now since $R=[R, P] \leq[G, P] \unlhd G$, we have $\left\langle R^{G}\right\rangle \leq[G, P]$. On the other hand, it follows $V=[V, R] \leq\left\langle R^{G}\right\rangle \leq[G, P]$ and therefore $G=[G, P]$.

Next we construct an elementary abelian p-group A which acts on G. We understand $P R$ as a subgroup of $G L(V)$ and let Z be a cyclic group of order p of $Z(G L(V))$. Then Z centralises $P R$ and acts as a non-trivial group of scalar automorphisms on V. Finally let U be a cyclic group of order p centralising Z, P, R and V. Set $A_{0}:=P, A:=U \times Z \times A_{0}$ and $B=1$. Now A is an elementary abelian group of order p^{3} and the central product $A A_{0}=A$ acts coprimely on the soluble p^{\prime}-group G. As we have seen above, $\left[G, A_{0}\right]=G$. Let $H:=C_{G}\left(A_{0} B\right)=C_{G}\left(A_{0}\right)$. Then we show

$$
\left\langle\left[C_{G}(X), A_{0}\right] \cap H \mid X \in \operatorname{Hyp}(A)\right\rangle=1 .
$$

(But clearly $H \neq 1$.)
Assume that there exists an $X \in H y p(A)$ such that $\left[C_{G}(X), A_{0}\right] \cap H \neq 1$. Then in particular $\left[C_{G}(X), A_{0}\right] \neq 1$ and thus $A_{0} \nsubseteq X$. This implies $A=X \times A_{0}$ and it follows that $\left[C_{G}(X), A_{0}\right] \cap H \leq C_{G}(X) \cap C_{G}\left(A_{0}\right) \leq C_{G}(A)$. But by construction $C_{G}(A)=1$, a contradiction.

Acknowledgements

This article is based on a part of my PhD thesis, and I would like to thank my supervisor and teacher Helmut Bender for his advice. Also I would like to thank Paul Flavell for pointing out the above example to me.

References

[1] Goldschmidt, D.M.: Weakly embedded 2-local subgroups of finite groups, J. Algebra 21 (1972), 341-351.
[2] Goldschmidt, D.M.: Strongly closed 2-subgroups of finite groups, Ann. of Math. II 102 (1975), 475-489.
[3] Kurzweil, H., Stellmacher B.: The Theory of Finite Groups. Springer 2004.

[^0]: * This research was supported by the Studienstiftung des deutschen Volkes. Email address: R.Waldecker@bham.ac.uk (Rebecca Waldecker).
 URL: web.mat.bham.ac.uk/R.Waldecker (Rebecca Waldecker).

