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Abstract

We analyse a minimal counterexample to Glauberman’s Z∗-Theorem from a local group theoretic
point of view. One of the main results is a group theoretic proof for the Z∗-Theorem in the special
case where the centraliser of an isolated involution is soluble.
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1. Introduction

In this paper we prove the following:

The Soluble Z∗-Theorem.
Suppose that G is a finite group and that z ∈ G is an isolated involution.
If CG(z) is soluble, then 〈z〉O(G) E G.

Here an involution z ∈ G is isolated if the only conjugate of z in G commuting with z is z itself.

The result above is a special case of Glauberman’s Z∗-Theorem ([6]) which says that in a finite
group G, every isolated involution is central modulo O(G).
We provide a new proof here, for the Soluble Z∗-Theorem, which does not use modular character
theory. The deepest results which we apply are the Brauer-Suzuki Theorem (for which Glauber-
man gave a proof based on ordinary representation theory ([11])) and the Odd Order Theorem
([4]). We would also like to point out that this work is part of the larger project to find a group
theoretic proof for Glauberman’s Z∗-Theorem in general. We therefore establish our results in the
framework of a minimal counterexample to the Z∗-Theorem - most of them are required in subse-
quent work and do not depend on any solubility assumption. However, the Soluble Z∗-Theorem
is a consequence of the general results and might be of independent interest.
After some preliminaries, we look at a group G with an isolated involution z in Section 4. We
would like to thank the referee for pointing out the connections between groups with isolated
involutions and certain classes of loops of odd order which we briefly refer to in that chapter. It
turns out that by defining two binary operations on the set of commutators K := {zzg | g ∈ G}
we can show that, as a set, K = CK(s)CK(sz)CK(s) for any involution s which commutes with
z (Theorem 4.8). This implies later that G is generated by two involution centralisers and also
plays a role in subsequent work when signalizer functors appear. It follows from Theorem 4.8
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that G possesses z-invariant Sylow p-subgroups for every prime p (Theorem 4.11). This is one
of several places where we see that (unsurprisingly) the isolated involution z behaves as if it acts
coprimely on every z-invariant subgroup - not only on those of odd order.
In Section 5 we start investigating a minimal counterexample G to Glauberman’s Z∗-Theorem.
Thus G is a finite group and z ∈ G is an isolated involution such that 〈z〉O(G) is not normal in G
and G is minimal in a particular sense. As z < Z(G), we have that C := CG(z) is contained in a
maximal subgroup of G. We point out again that we do not suppose that C is soluble. From the
minimality we deduce that G is almost simple (Lemma 5.3) and after collecting some additional
information about the structure of G we prove our first main result (Theorem 6.3) in Section 6.

Theorem A. Suppose that M is a maximal subgroup of G containing C. If possible, choose M
such that there exists a prime p with Op(M) , 1 = COp(M)(z). Then one of the following holds:
- M = C.
- F∗(M) = Op(M) for some odd prime p.
- E(M) , 1.

The main ingredients for the proof are the Bender method and applications of coprime action
results. We introduce the notation and background results for the Bender method at the beginning
of Chapter 6. The Infection Theorem (6.2) is mainly a presentation of results of Bender’s for our
situation to simplify later quotations. We proceed by contradiction, assuming that M is a maximal
subgroup of G which properly contains C. We then find a subgroup U in Op(M) for some odd
prime p such that 1 , U = [U, z] and either NG(U) ≤ M or F∗(M) = Op(M) (Lemma 6.4 and
Corollary 6.8). This is the basis for further investigation; we gradually work our way up to show
that if, in addition, M is not of characteristic p, then for certain subgroups X of F(M), we can
force NG(X) to be contained in a unique maximal subgroup of G, namely in M. The strategy is
always the same: We suppose that NG(X) is contained in a maximal subgroup H of G and then use
the Bender Method to show that H = M. Our main result there is that if 1 , X = [X, z] ≤ Op(M),
then M is the unique maximal subgroup of G containing NG(X) (Lemma 6.13). Then we are
close to a contradiction. We assume that M is in fact a counterexample to Theorem A, i.e. that
C < M, F∗(M) , Op(M) and E(M) = 1. First we show that Op(M) is a cyclic group which is
inverted by z (Lemma 6.16). From there we find a non-trivial normal subgroup of G which is
contained in M. This is impossible and finishes the proof of Theorem A.

In Section 7 we change perspective and rather than further investigating C only, we look at the
centralisers of three involutions at the same time. It turns out that if O2′,2(C) contains involutions
distinct from z, then this has a strong impact on the structure of the group. The result is (Lemmas
7.4 and 7.6, Theorem 7.21):

Theorem B. Suppose that O2′,2(C) contains an elementary abelian subgroup of order 4. Then
the following hold:
- G is simple and of 2-rank 2.
- The Sylow 2-subgroups of G possess precisely three involutions.
- All involutions of G are isolated and their centralisers are maximal subgroups.

As an immediate consequence of Theorem B, under the hypothesis above G has exactly three
conjugacy classes of involutions. For the proof we first note that an elementary abelian subgroup
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V = {1, a, b, z} of order 4 of O2′,2(C) is not contained in any larger elementary abelian 2-subgroup
(Lemma 7.2). Then a key observation is that whenever a and b are contained in a subgroup H
of G, then they are either isolated or conjugate in H. In particular, they are isolated or conjugate
in G. In the first case, we show that they “behave” like z and that we can apply all the results
for them which we proved for z before. In the second case, we can choose maximal subgroups
containing the centralisers of a and b, respectively, to be conjugate. In both cases, we are again in
a position where we can appeal to the Bender method. The main objects are a maximal subgroup
M containing C, a maximal subgroup La containing CG(a) and a maximal subgroup Lb containing
CG(b). One of the first results is that under the hypothesis of Theorem B, G is simple (Lemma
7.4) and the 2-rank of G is precisely 2 (Lemma 7.6). There is a situation which needs special
attention - the case where F∗(La) and F∗(Lb) (or F∗(M)) are q-groups for the same odd prime q.
So the next step is to show that this does not occur (Lemmas 7.17 and 7.18). Then in Theorem
7.19 we prove that CG(a) is a maximal subgroup of G. The observation that a and b are isolated
(Lemma 7.20) and a summary of the statements (Theorem 7.21) conclude the section.
We continue investigating the case where O2′,2(C) contains an elementary abelian subgroup of
order 4 at the beginning of Chapter 8. It turns out that, under this assumption, C/O(C) is perfect
(Lemma 8.4). This enables us to prove the next main result (Theorem 8.5):

Theorem C. C/O(C) possesses at least one component. In particular, C is not soluble.

We then convince ourselves that Theorems A, B and C hold in a minimal counterexample to the
Soluble Z∗-Theorem and obtain a contradiction at the end of Section 8. Throughout, all groups
are meant to be finite and we follow standard notation as in [1] and [16].
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2. Preliminaries

We introduce some notation and collect a few well known results about coprime action. We use
without further reference that groups of odd order are soluble ([4]).

2.1. Notation

Let X be a group, let p be a prime and let π be a set of primes.

- Let x ∈ X and U ≤ X. Then xU := {xu | u ∈ U}. Similarly if Y ≤ X, then YU := {Yu | u ∈
U}.

- If U ≤ X is such that CX(U) ≤ U, then we say that U is centraliser closed in X.
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- Let A, B ≤ X be such that AB is a subgroup of X. We say that AB is a central product and
write A ∗ B if [A, B] = 1. If in addition A∩ B = 1, then we say that AB is a direct product
and we denote this by A × B.

- For any integer n ≥ 1, we denote by np the largest p-power that divides n.

- By rp(X) we denote the p-rank of X. If X is a p-group (and therefore no confusion about
the prime is possible), then we write r(X) for the rank of X.

- If F∗(X) = Op(X), then we say that X has characteristic p and we write char(X) = p.

- We abbreviate Oπ(F(X)) by Fπ(X).

- We define Op′,p(X) by Op′,p(X)/Op′ (X) = Op(X/Op′ (X)).

- We define Z∗(X) by Z∗(X)/O(X) = Z(X/O(X)).

- If X is a p-group, then by K∞(X) we denote the characteristic subgroup of X introduced
by Glauberman in [9], and by ZJ(X) we denote the centre of the Thompson subgroup of X
(a characteristic subgroup) as defined in [7].

- Suppose that X is a p-group. Then X is extra-special if X′ = Φ(X) = Z(X) is cyclic of
order p.

- If an involution t acts on a group Q of odd order, then we define IQ(t) := {x ∈ Q | xt = x−1}.

- Let A ≤ X. We define IX(A, π) to be the set of all A-invariant π-subgroups of X.
Furthermore, I∗X(A, π) denotes the set of maximal elements of IX(A, π) with respect to
inclusion. We use the same notation if A is a group which acts on X. If π = {p}, then we
abbreviate IX(A, {p}) by IX(A, p).

- For convenience, we say that X is quaternion if X ' Q2n for some n ≥ 3 (rather then
saying “generalised quaternion”). For all k ∈ N let Qk

8 denote the central, non-direct
product of k quaternion groups of order 8.

- For all n ∈ N we denote by Cn the cyclic group of order n and by S n (An) the symmetric
(alternating) group on n elements.

2.2. Coprime Action

Let P be a π-group acting on a π′-group Q. Then the following hold:

(a) Q = CQ(P)[Q, P] and [Q, P, P] = [Q, P]. If Q is abelian, then Q = CQ(P) × [Q, P].
(b) Suppose that P is a non-cyclic elementary abelian p-group. Then Q = 〈CQ(x) | x ∈ P#〉. If

P has order 4, e.g. P = {1, x, y, xy}, and Q is nilpotent, then Q = CQ(x)CQ(y)CQ(xy). As a
corollary, if CQ(x) ≤ CQ(y), then we have IQ(y) ⊆ IQ(x).

(c) If P centralises a centraliser closed subnormal subgroup of Q, then [Q, P] = 1.
(d) Let q ∈ π′. Then I∗Q(P, q) ⊆ Sylq(Q) and CQ(P) is transitive on I∗Q(P, q).
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Proof. Most of these are contained in [16], they correspond to 8.2.3, 8.2.7, 8.3.4 and 8.4.2 and
immediate corollaries thereof. Part (c) is Proposition 1.10 in [3].

Lemma 2.1. Suppose that an involution t ∈ X acts on a q-subgroup Q of X where q is odd. If
r(Q) ≥ 3, then Q possesses a t-invariant elementary abelian subgroup of order q3.

Proof. This is Lemma 11.18 in [14].

Lemma 2.2. Let H ≤ X be a 2′-subgroup which is normalised by an involution t ∈ X. Suppose
that every t-invariant π-subgroup of H is centralised by t. Then H = CH(t)Oπ′ (H).

Proof. Without loss of generality, Oπ′ (H) = 1. Then F(H) is a t-invariant π-subgroup of H and
thus, by hypothesis, t centralises F(H). But F(H) = F∗(H) because H is soluble by the Odd
Order Theorem. Hence F(H) is centraliser closed and therefore Coprime Action (c) implies that
[H, t] = 1.

3. General results

The following are background results which are needed later and for which we give proofs or
references. Again X denotes a group, p a prime and π a set of primes.

Lemma 3.1. Let X be a p-group. Then X possesses a characteristic subgroup P (a so called
critical subgroup) such that the following hold:

- Every p′-subgroup of Aut(X) acts faithfully on P.
- P′ = Φ(P) is elementary abelian and lies in Z(P).
- If X , 1, then exp(P) = p if p is odd and exp(P) = 4 if p = 2.

Proof. This is Proposition 11.11 in [14].

Lemma 3.2. Suppose that X is a 2-group and that X0 E X. If r(X0) ≥ 2, then either X0 contains
a normal elementary abelian subgroup of X of order 4 or X0 is dihedral or semi-dihedral.

Proof. This is Lemma 10.11 in [14].

Lemma 3.3. Let n ∈ N, n ≥ 2. Then the following hold:

- The number of cyclic subgroups of order 4 in Qn
8 is 1

2 (22n − (−2)n).
- The number of cyclic subgroups of order 4 in Qn−1

8 ∗ D8 is 1
2 (22n + (−2)n).

- If n is even, then r(Qn
8) = n + 1.

- If n is odd, then r(Qn
8) = r(Qn−1

8 ∗ D8) = n.
- r(C4 ∗ Qn

8) = r(C4 ∗ Qn−1
8 ∗ D8) = n + 1.

Proof. The formulae are derived within the proof of Theorem 5.2 in [13]. Proposition 10.4 and
Lemma 10.8 in [14] give the statements about the rank.

Lemma 3.4 (Thompson’s P×Q-Lemma). Suppose that X acts on a p-group W and that X = PQ
is a central product of a p-group P and a p-perfect group Q (i.e. Op(Q) = Q). If Q centralises
CW (P), then [W,Q] = 1.
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Proof. This is on p.112 in [1].

Lemma 3.5. Let Y be a p-subgroup of Op′,p(X). Then Op′ (CX(Y)) ≤ Op′ (X). If X is soluble, then
for every p-subgroup P of X we have Op′ (CX(P)) ≤ Op′ (X).

Proof. These follow from (31.14) and (31.15) in [1].

Lemma 3.6. Let t ∈ O2′,2(X) be an involution and let D ≤ X be a CX(t)-invariant 2′-subgroup.
Then D ≤ O(X). If D is nilpotent, then [t,D] ≤ F(X).

Proof. By Coprime Action (a), we have D = CD(t)[D, t]. Now as t ∈ O2′,2(X) and D has odd
order, we obtain [t,D] ≤ O2′,2(X) ∩ D ≤ O(X). On the other hand CD(t) is CX(t)-invariant and
hence CD(t) ≤ O(CX(t)) ≤ O(X) by Lemma 3.5. Thus D ≤ O(X).
For the second assertion, suppose that D is nilpotent. Let q ∈ π(D). We show that [t,Oq(D)] ≤
Oq(X). Without loss of generality, Oq(X) = 1, which means that we need to show [t,Oq(D)] = 1.
First we note that Oq(D) is CX(t)-invariant. We set D0 := [t,Oq(D)] and observe that

[CF(X)(t),D0] ≤ F(X) ∩ Oq(D) ≤ Oq(X) = 1

and therefore CF(X)(t) ≤ CF(X)(D0) =: H. Now t acts on NF(X)(H)/H, and this action is fixed
point free. Thus t inverts every element of NF(X)(H)/H. Consequently D0 = [D0, t] centralises
that factor group since it is D0-invariant, yielding [NF(X)(H),D0] = 1. But this implies that
NF(X)(H) ≤ CF(X)(D0) = H and hence H is equal to its normaliser in F(X). It follows that
H = F(X) because F(X) is nilpotent. As O(X) is soluble, we deduce that D0 ≤ CO(X)(F(O(X))) =

Z(F(O(X))) which gives D0 ≤ Oq(X) = 1.

Lemma 3.7. Let P be a p-subgroup of Op′,p(X). Then CX(P) is transitive on the set I∗X(P, q) for
every q ∈ p′.

Proof. Arguing modulo Op′ (X), we may suppose that Op′ (X) = 1. Let Q1,Q2 ∈ I∗X(P, q).
Then as P ≤ Op(X), we have [Q1, P] ≤ Q1 ∩ Op(X) = 1 and similarly [Q2, P] = 1. Thus
Q1,Q2 ≤ CX(P) and in particular Q1,Q2 ∈ I∗CX (P)(P, q). But then Q1 and Q2 are simply two
Sylow q-subgroups of CX(P) and therefore conjugate in CX(P) by Sylow’s Theorem.

Lemma 3.8. Let P ∈ Sylp(X) and let H ≤ X be such that P ≤ H. For every p-element y ∈ H
suppose that yX ∩ H = yH . If Op(H) , H, then Op(X) , X.

Proof. This follows from Lemma 15.10 in [14].

The next results are weakened versions of Theorem A in [9] and Glauberman’s ZJ-Theorem (in
[7]), respectively.

Theorem 3.9. Suppose that X has odd order and let P be a p-subgroup of X containing Op(X).
Then if char(X) = p, it follows that K∞(P) is normal in X.

Theorem 3.10. Suppose that X has odd order and that char(X) = p. Let P ∈ S ylp(X). Then
ZJ(P) E X.
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Theorem 3.11. Suppose that S ∈ S yl2(X) is cyclic. Then X = S O(X). In particular the unique
involution in S is contained in Z∗(X).

Proof. This follows from 7.2.2 in [16] and is in fact a corollary of Burnside’s Transfer Theorem.

Theorem 3.12 (Brauer-Suzuki). Suppose that S ∈ S yl2(X) is quaternion and let s be the unique
involution in S . Then s ∈ Z∗(X).

Proof. For a proof using ordinary character theory see [11].

Theorem 3.13. Suppose that B is an abelian 2-subgroup of X of rank at least 3. Let A be a
non-cyclic subgroup of B such that A ≤ O2′,2(CX(b)) for all involutions b ∈ B. Then
〈O(CX(a)) | a ∈ Ω1(A)#〉 is a subgroup of X of odd order.

Proof. This is Theorem 3.1 in [12].

Theorem 3.14. Suppose the following:
- A is a non-trivial proper subgroup of X, π := π(A) and rp(Z(A)) ≥ 3 for some prime p ∈ π.
- If A ≤ Y < X, then 〈IY (A, π′)〉 = Oπ′ (Y).
- If q ∈ π′ and Q is a non-trivial q-subgroup of X, then NX(Q) < X.
Then Oπ′ (CX(A)) is transitive on I∗X(A, q) for every q ∈ π′.

Proof. This is Theorem 7.2 in [3].

Theorem 3.15. Suppose that X is a π-group and that A is a π′-group of automorphisms of X.
Suppose that t is an automorphism of X of order 2 such that CX(t) ≤ CX(A). Then [CX(A), t] and
[X, A] are normal subgroups of X and [X, A] is nilpotent of odd order.

Proof. This is a weakened version of Theorem 1 in [10].

The following theorem is needed towards the end of the paper.

Theorem 3.16. Let T be a finite 2-group with precisely three involutions. Then Aut(T ) is soluble.

Proof. Assume not. Then Aut(T ) possesses a non-trivial perfect subgroup A. We choose A
minimal in the sense that every proper subgroup of A is soluble. Let a, b, c be the involutions
in T and let V := 〈a, b〉. Then V is a characteristic subgroup of T . As Z(T ) contains at least
one involution, there are two cases: V ≤ Z(T ) or |V ∩ Z(T )| = 2. In the following, until the last
paragraph of the proof, we suppose that V ≤ Z(T ).

(1) V ≤ CT (A).

Proof. Assume that CA(V) is a proper subgroup of A. Then CA(V) is soluble. On the other
hand A/CA(V) is isomorphic to a subgroup of Aut(V) ' S 3. But then this factor group is
soluble and so is A, a contradiction. Therefore A centralises V .

(2) Without loss, Φ(T ) = T ′ is elementary abelian and lies in Z(T ).
7



Proof. By Lemma 3.1, T possesses a critical subgroup T0. We recall that this means that
T0 is characteristic in T , O2(Aut(T )) acts faithfully on T0 and T ′0 = Φ(T0) is elementary
abelian and lies in Z(T0). If we show that Aut(T0) is soluble, then O2(Aut(T )) ≤ Aut(T0)
is soluble. As Aut(T )/O2(Aut(T )) is a 2-group, this implies that Aut(T ) is soluble, a
contradicton. Thus we may replace T by T0 if T0 contains exactly three involutions. But
assume that T0 contains a unique involution. Then T0 is quaternion or cyclic, and in both
cases Aut(T0) is soluble. We showed above that this implies that Aut(T ) is soluble, a
contradiction. Therefore T0 contains all three involutions and we replace T by T0.

We recall that in particular T is now of exponent 4 (by Lemma 3.1) and T ′ ≤ V which implies
|T ′| ≤ 4. Moreover we still suppose that V ≤ Z(T ).

(3) T does not have a series 1 = T0 ≤ T1 ≤ · · · ≤ Tk = T of subgroups Ti, with 0 ≤ i ≤ k ∈ N,
such that Ti is A-invariant and |Ti+1/Ti| ≤ 4 for all i ∈ {0, ..., k − 1}.

Proof. Assume that such a series of subgroups of T exists. Since CA(T ) = 1, there is a
j ∈ {0, ..., k − 1} such that A acts non-trivially on T j+1/T j. Hence CA(T j+1/T j) is soluble.
But A/CA(T j+1/T j) is isomorphic to a subgroup of S 4 and thus A is soluble, a contradiction.

(4) Let v ∈ V# and T := T/〈v〉. Then r(T ) ≤ 3.

Proof. Let X ≤ T be such that X is a maximal elementary abelian subgroup of T . Then
V ≤ X and there exists a subgroup Y of T such that Y is a complement to V in X. In
particular Y ∩ V = 〈v〉, so Y contains a unique involution. It follows that Y is cyclic or
quaternion, i.e. Y is cyclic or dihedral and thus of rank at most 2. As |V | = 2, this yields
r(X) ≤ 3.

(5) Let v ∈ V# and T := T/〈v〉. Let Z ≤ T be such that Z = Ω1(Z(T )). Then T has a subgroup
X such that T = Z ∗ X and X is a central product of a cyclic group of order at most 4 and
an extra-special group.

Proof. As T has exponent 4, we see that T/V is elementary abelian. Choose V ≤ X ≤ T
such that X/V is a complement to Z/V in T/V . Then X∩Z ≤ V and T = Z∗X. We note that
Φ(T ) = V and that X has exponent 4. The last assertion follows because Φ(X) = X

′
≤ Z(X)

and Z(X) is cyclic of order at most 4.

(6) Let v ∈ V# and T := T/〈v〉. Then one of the following holds:

(a) |T | = 26 and T ' Q8 ∗ D8.
(b) |T | = 27 and T ' C4 ∗ Q2

8 or T ' C2 × (Q8 ∗ D8).
(c) |T | = 28 and T ' Q3

8.

Proof. Let Z ≤ T and X ≤ T be such that Z = Ω1(Z(T )) and T = Z ∗ X as in (5).
Suppose that r(Z) = 3. Then (4) yields that X contains a unique involution and this forces
X to be quaternion of order 8 or cyclic of order 4. In both cases T possesses a series of
subgroups as in (3), a contradiction.
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Next suppose that r(Z) = 2. Then, again by (4), we have r(X) ≤ 2. The structure of X
together with Lemma 3.3 leaves the possibilities

X ' C4, Q8, D8, C4 ∗ Q8, Q8 ∗ D8.

As |Z| = 4, the cases X ' C4, Q8 and D8 contradict (3). If X ' C4 ∗ Q8, then X has order
16 with a centre of order 4, so again we find a series of subgroups as in (3), a contradiction.
This only leaves the possibility X ' Q8 ∗D8. Then the central involution of X lies in Z and
hence T ' C2 × (Q8 ∗ D8) which is the second case in (b).
Finally suppose that Z is cyclic. Then |Z| = 2 and therefore Z = V and T = X. By (4) and
Lemma 3.3, the possibilities for T are

T ' C4, Q8, D8, C4 ∗ Q8, Q8 ∗ D8, Q2
8,C4 ∗ Q2

8 ' C4 ∗ Q8 ∗ D8, Q3
8.

By (3), we can exclude the cases T ' C4, Q8, D8 and C4 ∗ Q8. The next possibility is
T ' Q8 ∗ D8 which leads to (a). We observe that the automorphism group of Q2

8 is soluble
which leaves us with T ' C4 ∗ Q2

8 or Q3
8, i.e. the cases (b) and (c).

For all v ∈ V# we define Tv := {t ∈ T | t2 = v}. Then T is the disjoint union of V , Ta, Tb and Tc

and A leaves every member of this partition invariant. Now we set T̃ := T/V and T̃v := {t̃ | t ∈ Tv}

for every involution v ∈ V .

(7) |T̃ | = 16 and |T̃a| = |T̃b| = |T̃c| = 5.

Proof. The partition of T into V , Ta, Tb and Tc yields that

|T̃ | − 1 = |T̃a| + |T̃b| + |T̃c|.

By (6) we have |T̃ | ∈ {24, 25, 26}.
Assume that |T̃ | = 26. Then we are in case (c) of (6) and Lemma 3.3 yields that, for all
v ∈ V#, the factor group T/〈v〉 possesses 36 cyclic subgroups of order 4. Thus there are
27 − 1 − 72 = 55 involutions in T/〈v〉 which gives 1

2 (55 − 1) = 27 distinct elements in T̃v.
It follows that 63 = 26 − 1 = |T̃ | − 1 = 3 · 27, a contradiction.
Assume that |T̃ | = 25. By Lemma 3.3, the group Q2

8 possesses 6 cyclic subgroups of order
4 and therefore 32− 1− 12 = 19 involutions. Hence referring to the first case in (6)(b), for
all v ∈ V#, the factor group T/〈v〉 possesses 19+12 = 31 involutions, giving 1

2 (31−1) = 15
distinct elements in T̃v. It follows that 31 = 25 − 1 = |T̃ | − 1 = 3 · 15, a contradiction.
Again by Lemma 3.3, the group Q8 ∗ D8 has 10 cyclic subgroups of order 4 and hence
32 − 1 − 20 = 11 involutions. Thus for the second case in (6)(b) we obtain that, for
all v ∈ V#, the factor group T/〈v〉 possesses 2 · 11 + 1 = 23 involutions. This gives
1
2 (23 − 1) = 11 distinct elements in T̃v and it follows that 31 = 25 − 1 = |T̃ | − 1 = 3 · 11,
again a contradiction.
Therefore we are left with the case that |T̃ | = 24 which is (6)(a). Hence T/〈v〉 ' Q8 ∗ D8

for all v ∈ V#, and we showed above that T/〈v〉 has 11 involutions. The 10 non-central
involutions yield 5 distinct elements in T̃v. Thus |T̃a| = |T̃b| = |T̃c| = 5 as stated.
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It follows from (7) that A/CA(T̃ ) is isomorphic to a (perfect) subgroup of S 5 and has three orbits
of length 5 on T̃ #. This corresponds to the fact that |Ta| = |Tb| = |Tc| = 20. Since the image of
A/CA(T̃ ) in S 5 contains A5, it is 2-transitive on every set T̃v, v ∈ V#. Hence so is A.
We choose elements t1, ..., t5 ∈ T such that T̃a = {t̃1, ..., t̃5} and we let T := T/〈a〉. Then Ta =

{tiv | i ∈ {1, ..., 5}, v ∈ V}. We recall that T ′ ≤ V and therefore [t1, t2] = w for some w ∈ V . But
then the 2-transitivity of A yields that [ti, t j] = w (and therefore (tit j)2 = w whenever i , j) for all
i, j ∈ {1, ..., 5}. If w , 1, then the elements tit j and their products with a, b and c give 40 distinct
members of Tw, a contradiction. Hence w = 1 and it follows that 〈t1, ..., t5〉 is abelian and that all
the products tit j (i , j) are equal and of order 2. Therefore 〈t1, ..., t5〉 is elementary abelian and
contains all involutions of T . This contradicts the fact that T ' Q8 ∗ D8.
Thus we have established the theorem in the case where V ≤ Z(T ).

Now suppose that Z(T ) possesses only one involution, say a. Then T0 := CT (b) is an A-invariant
subgroup of index 2 in T containing V . But Z(T ) as well as b lie in Z(T0). Thus T0 is a 2-group
which has exactly three involutions, and they are all central. Applying the theorem for T0 yields
that A/CA(T0) is soluble. On the other hand [T, A] ≤ T0 and therefore CA(T0) < A is soluble.
This is impossible and proves the full statement.

We would like to mention the work on the classification of 2-groups with precisely three invo-
lutions by Janko and others. (See for example [15].) The above theorem is a corollary of this
classification, proceeding case by case, but not at all immediate. We therefore decided to give
direct arguments.

4. Isolated Involutions

From now on G is a finite group and z ∈ G is an isolated involution, i.e. an involution z such
that the only conjugate of z in G commuting with z is z itself. We set C := CG(z) and start by
collecting some basic facts about isolated involutions. Then we deduce knowledge about the set
K := {zzg | g ∈ G} of commutators and use it to make initial statements about the structure of G.

Lemma 4.1. Let z ∈ S ∈ Syl2(G).

(1) zG ∩ S = {z}.
(2) Every z-invariant 2-subgroup of G is centralised by z . In particular z ∈ Z(S ).
(3) zzg is an element of odd order for all g ∈ G.
(4) Whenever z ∈ H ≤ G, then zG ∩ H = zH .
(5) Let w ∈ G\zG be an involution. Then the order of zw is even, but not divisible by 4. In

particular, the Sylow 2-subgroups of 〈z,w〉 are elementary abelian of order 4.
(6) If z ∈ X E Y ≤ G, then Y = XCY (z).
(7) Suppose that z < N E G and let G := G/N. Then CG(z) = C and z is isolated in G.
(8) If C ≤ H ≤ G, then H is the only conjugate of H in G which contains z .

Proof. (1)-(3) are straightforward from the definition of “isolated”.
(4) Let g ∈ G be such that zg ∈ H. We observe that 〈z, zg〉 is a dihedral group of twice odd order
by (3). Thus z and zg are conjugate in 〈z, zg〉 by Sylow’s Theorem.
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(5) Set D := 〈z,w〉 and note that zw has even order because otherwise z and w are conjugate. Let
z ∈ T ∈ S yl2(D). Then z ∈ Z(T ) by (2) and on the other hand a power of zw is the unique central
involution in D. Therefore T is elementary abelian of order 4.
(6) Let z ∈ P ∈ Syl2(X). As z is isolated and central in P by (2), we have NY (P) ≤ CY (z). Hence
with a Frattini argument, it follows that Y = XNY (P) ≤ XCY (z) as stated.
(7) Let g ∈ G be such that (Ng)z = Ng. Then gzg−1 ∈ N and hence zg−1

∈ N〈z〉. By (4) it follows
that z and zg−1

are conjugate in N〈z〉. Choose x ∈ N〈z〉 to be such that zx = zg−1
. Then zxg = z

which means that xg ∈ C and therefore xgz ∈ C. On the other hand, since x ∈ N〈z〉, we have
Nxgz = Nzgz = Ng, so we see that every z-invariant coset of N has a representative in C. Thus
CG(z) = C and the second statement follows from there.
(8) Assume that z ∈ Hg where g ∈ G\NG(H). Then z ∈ H ∩ Hg and therefore z, zg−1

∈ H. It
follows from (4) that there exists an element h ∈ H such that z = zhg. Hence hg ∈ C ≤ H and
thus g ∈ H, a contradiction.

Lemma 4.2. Suppose that z ∈ H ≤ G. Then H ∩C controls fusion in H ∩C with respect to H.

Proof. Let x, y ∈ H ∩ C and let h ∈ H be such that xh = y. We need to show that x and y are
conjugate in H∩C. Now as x, xh are both contained in C, it follows that z, zh−1

∈ CH(x). But then
Lemma 4.1 (4) yields that z and zh−1

are conjugate in CH(x). Let a ∈ CH(x) be such that za = zh−1
.

This gives z = zah which means that ah ∈ C ∩ H. As xah = xh = y, we are done.

Corollary 4.3. If O2(G) = G, then O2(C) = C.

Proof. By Lemma 4.1 (2) we know that C contains a Sylow 2-subgroup of G. Now suppose that
y ∈ C is a 2-element. Then yG ∩ C = yC by Lemma 4.2. So the result follows from Lemma
3.8.

Lemma 4.4. Let s, t ∈ zG be distinct. Then st < C.

Proof. Assume that st ∈ C and set X := CG(st), Y := X〈t〉. Then t inverts st and z centralises st
and thus z ∈ X E Y and t < X. But z and t are both contained in Y and therefore conjugate in Y
by Lemma 4.1 (4). This is impossible.

Recall that K = {zzg | g ∈ G}, and for all a, b ∈ K let a ◦ b := aba. In [5], where Fischer
proves a special case of the Z∗-Theorem, the operation ◦ is introduced more generally in the
context of distributive quasi-groups. Glauberman refers to Fischer’s result in [6]. In [8] he
mentions that the Z∗-Theorem is a group theoretic equivalent to the fact that every finite loop
of odd order with certain additional properties - which he refers to as B-loops - is soluble. The
reader familiar with these results (and more recent work, e.g. [2]) might therefore recognise the
following construction from the context of loop theory.

Lemma 4.5.

(1) K is C-invariant and contains 1.
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(2) Every element in K has odd order and is inverted by z .
(3) Let a ∈ K. Then an ∈ K for all n ∈ N.
(4) ◦ is a binary operation on K.

Proof. The first statement is immediate. By Lemma 4.1 (3), the elements of K have odd order.
Moreover if a ∈ K, that is a = zzg for some g ∈ G, then az = zzzgz = zgz = a−1. For (3)
we observe that, if a = zzg with g ∈ G, then an = (zzg)n = zh where h is conjugate to z .
For the last assertion let a, b ∈ K, i.e. let g, h ∈ G be such that a = zzg and b = zzh. Then
a ◦ b = aba = zzgzzhzzg = zzha ∈ K and therefore ◦ is a binary operation on K.

Lemma 4.6.

(1) Let a, b, d ∈ K. If a ◦ b = d, then a−1 ◦ d = b. Moreover a−1 ◦ b−1 = (a ◦ b)−1.
(2) For all a ∈ K, the maps k 7→ k ◦ a and k 7→ a ◦ k are bijective.

Proof. For the first result, we recall that a◦b = d means that aba = d. Thus a−1◦d = a−1da−1 = b
as stated. Finally (a ◦ b)−1 = (aba)−1 = a−1b−1a−1 = a−1 ◦ b−1.
For the second statement, it suffices to show that both maps are injective. Let a, b, d ∈ K, i.e.
let g, h, k ∈ G be such that a = zzg, b = zzh and d = zzk. Suppose that a ◦ b = a ◦ d. Then
immediately b = d. Now if a ◦ b = d ◦ b, then zzgzzhzzg = zzkzzhzzk and it follows that zha = zhd.
Hence ha and hd are in the same coset of C in G which means that zkzg ∈ C. Then Lemma 4.4
forces a = d.

Definition. For all a, b ∈ K, we denote by a + b the (by Lemma 4.6 (2)) unique element d in K
with the property that d ◦ a−1 = b. In other words, (a + b)a−1(a + b) = (a + b) ◦ a−1 = b.

Lemma 4.7. Let a, b, d ∈ K.

(1) a + b = b + a.
(2) For all c ∈ C we have (a + b)c = ac + bc.
(3) (a + b)−1 = a−1 + b−1.
(4) a + b = 1 if and only if b = a−1.
(5) a ◦ (b + d) = a ◦ b + a ◦ d.

Proof. By definition, (a + b) ◦ a−1 = b. Applying Lemma 4.6 (1) yields (a + b)−1 ◦ b = a−1 and
then (a + b) ◦ b−1 = a. But, again by definition, a = (b + a) ◦ b−1. This implies a + b = b + a.
The second statement is immediate. As z is in C and inverts K (by Lemma 4.5 (2)), the third
statement follows. Now a + b = 1 means that 1 ◦ a−1 = b, but then a−1 = 1a−11 = b. Conversely
1 ◦ a−1 = a−1 = (a + a−1) ◦ a−1 by definition of + and therefore a + a−1 = 1 by Lemma 4.6 (2).
For the last assertion we recall that, by definition, (b + d) ◦ b−1 = d. This gives a ◦ d = a ◦
((b + d) ◦ b−1). On the other hand, by definition of the element a ◦ b + a ◦ d, we have a ◦ d =

(a ◦ b + a ◦ d) ◦ (a ◦ b)−1. This yields
(a ◦ b + a ◦ d) ◦ (a ◦ b)−1 = a ◦ d = a ◦ ((b + d) ◦ b−1) = a((b + d)b−1(b + d))a
= a((b + d)aa−1b−1a−1a(b + d))a = a(b + d)a((a ◦ b)−1)a(b + d)a,
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by Lemma 4.6 (1). But

a(b + d)a((a ◦ b)−1)a(b + d)a = (a ◦ (b + d))(a ◦ b)−1(a ◦ (b + d)) = (a ◦ (b + d)) ◦ (a ◦ b)−1.

Therefore
(a ◦ b + a ◦ d) ◦ (a ◦ b)−1 = (a ◦ (b + d)) ◦ (a ◦ b)−1

and Lemma 4.6 (2) gives the result.

Theorem 4.8. Let a ∈ K and let s ∈ C be an involution. Then a = u ◦ v where u ∈ CK(s),
v ∈ CK(sz), and this representation of a is unique. In particular, |K| = |CK(s)||CK(sz)| and
K ⊆ 〈CK(s),CK(sz)〉.

Proof. We have a+as = as +a = (a+as)s by Lemma 4.7 (1) and (2) and therefore a+as ∈ CK(s).
If for all b ∈ K we set b := b + bs and if we let J := {b ∈ K | b = 1}, then Lemma 4.7 (4) yields
J = {b ∈ K | b + bs = 1} = IK(s) = CK(sz).
As a ∈ K is of odd order (Lemma 4.5 (2)), there exists a power y of a with the property that
(y−1)2 = a. We pick this element y and observe that, by Lemma 4.5 (3), it is contained in K and
thus lies in CK(s). Furthermore y ◦ a = 1. Lemma 4.7 (5) and the fact that s centralises y imply
that

y ◦ a = y ◦ (a + as) = y ◦ a + y ◦ as = y ◦ a + (y ◦ a)s = y ◦ a.

Thus y ◦ a = y ◦ a = 1 which means that y ◦ a ∈ J. Now let u := y−1 and v := y ◦ a. Then

a = y−1yayy−1 = y−1 ◦ (y ◦ a) = u ◦ v ∈ CK(s) ◦CK(sz).

This proves the existence of a representation as stated.
For the uniqueness suppose that a = u′ ◦ v′ ∈ CK(s) ◦CK(sz). Then

a = u′ ◦ v′ = (u′ ◦ v′) + (u′ ◦ v′)s = (u′ ◦ v′) + (u′ ◦ v′s) = u′ ◦ (v′ + v′s)

where the last equality comes from Lemma 4.7 (5). Moreover v′ ∈ J = IK(s) by choice which
implies that v′ = 1. We deduce that

a = u′ ◦ (v′ + v′s) = u′ ◦ v′ = u′ ◦ 1 = u′2

and therefore u′2 = a = u2. As u and u′ are of odd order, we obtain u = u′. Finally Lemma
4.6 (2) yields that also v = v′.

Lemma 4.9. Suppose that z ∈ H ≤ G. Then H = CH(z)(H ∩ K). More precisely, every coset of
CH(z) in H contains a unique element which is inverted by z .

Proof. Set C0 := CH(z). As K is C-invariant, H∩K is C0-invariant and every non-trivial element
in H ∩ K is inverted and not centralised by z . Therefore (H ∩ K) ∩ C0 = 1. As {zzh | h ∈ H} ⊆
H ∩ K, we have |H ∩ K| ≥ |H : C0|. Now we show that H ∩ K contains a unique representative
for every coset of C0 in H. Suppose that zzg, zzh ∈ H ∩ K are such that C0zzg = C0zzh. Then
zgzh ∈ C0 ≤ C which by Lemma 4.4 is only possible if zg = zh. The result follows.
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Corollary 4.10. G = CK and more precisely, every coset of C in G contains a unique element
which is inverted by z . Furthermore |G| = |C||CK(sz)||CK(s)| for every involution s ∈ C.

Proof. This follows from Theorem 4.8 and Lemma 4.9.

Theorem 4.11. Let p ∈ π(G). Then I∗G(〈z〉, p) ⊆ Sylp(G).

Proof. As z lies in a Sylow 2-subgroup of G, we may suppose that p is odd. We proceed by
induction on |G| and first show that IG(〈z〉, p) , {1}. Suppose that r2(G) = 1. Then the Sylow
2-subgroups of G are cyclic or quaternion. It follows that z ∈ Z∗(G) by Theorem 3.11 or the
Brauer-Suzuki Theorem (3.12), respectively. But then G = CO(G) and at least one of these
subgroups has order divisible by p. If p divides |C|, then z centralises a non-trivial p-subgroup
of G. If p divides |O(G)|, then Coprime Action (d) yields that {1} , IO(G)(〈z〉, p) ⊆ IG(〈z〉, p).
Thus we may suppose that r2(G) ≥ 2 and we choose an involution s ∈ C distinct from z . By
Corollary 4.10, p divides one of |C|, |CK(s)| or |CK(sz)|. If p divides |C|, then we are done.
Suppose therefore that p does not divide |C|. Then without loss of generality p divides |CK(s)| =
|CG(s) : CC(s)| (by Lemma 4.9). But z is contained in CG(s), thus by induction ICG(s)(〈z〉, p) ,
{1} if CG(s) < G. On the other hand, if CG(s) = G, then s ∈ Z(G). We can therefore argue by
induction in the factor group G/〈s〉, applying Lemma 4.1 (7). We conclude that IG(〈z〉, p) , {1}.
Now let P0 ∈ I∗G(〈z〉, p) and let N0 := NG(P0). We have z ∈ N0. If N0 < G, then by induction
I∗N0

(〈z〉, p) ⊆ Sylp(N0). By the maximal choice of P0, this yields P0 ∈ Sylp(N0) and therefore
P0 ∈ Sylp(G). If on the other hand N0 = G, then P0 E G and in G/P0 there exists a z-invariant
Sylow p-subgroup by induction. Its preimage in G is a z-invariant Sylow p-subgroup of G and
equals P0 by the maximal choice of P0.

Definition. From now on, for every subgroup H of G and for every prime p, we denote by
Sylp(H, z) the set of all z-invariant Sylow p-subgroups of H. Similarly, if V is a 2-subgroup of G,
then we denote by Sylp(H,V) the set of V-invariant Sylow p-subgroups of H.

Lemma 4.12. Let p ∈ π(G). Then C is transitive on Sylp(G, z).

Proof. Let P1, P2 ∈ Sylp(G, z) and let g ∈ G be such that Pg
1 = P2. Since z ∈ NG(P2) =

(NG(P1))g, we conclude that z and zg are both contained in NG(P2). They are therefore conjugate
in NG(P2) by Lemma 4.1 (4). Choose h ∈ NG(P2) such that z = zgh. Then gh ∈ C and Pgh

1 = Ph
2 =

P2.

Remark 4.13. Let V ≤ G be an elementary abelian 2-subgroup generated by (necessarily non-
conjugate) isolated involutions. Then the results in 4.11 and 4.12 can easily be generalised to
the following:
For all primes p ∈ π(G) we have I∗G(V, p) ⊆ Sylp(G) and CG(V) = NG(V) is transitive on
Sylp(G,V).

Lemma 4.14. Let V ≤ G be elementary abelian of order 4 and such that z ∈ V. Let a, b, z denote
the involutions in V. Let p be a prime and suppose that P ∈ Sylp(G,V) is such that P ≤ CG(a).
Suppose that C does not contain any Sylow p-subgroup of G. Then a and b are not conjugate in
G.
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Proof. First we apply Corollary 4.10 to obtain |G|p = |C|p|CK(a)|p|CK(b)|p. Our hypothesis gives
|G|p = |P| = |CG(a)|p = |CC(a)|p|CK(a)|p by Lemma 4.9. Therefore |C|p|CK(b)|p = |CC(a)|p.
As CC(a) ≤ C, this yields |CK(b)|p = 1. Now assume that a and b are conjugate in G. Then
by Lemma 4.2 there exists an x ∈ C such that ax = b. In particular CC(a)x = CC(b) and
CK(a)x = CK(b). But this implies |CK(a)|p = 1 and therefore |G|p = |C|p|CK(a)|p|CK(b)|p = |C|p
contrary to our hypothesis that C does not contain any Sylow p-subgroup of G.

Lemma 4.15. Let p ∈ π(G) and let P ∈ Sylp(G, z). Then P ∩ C ∈ Sylp(C) and |K|p = |IP(z)| =
|P : CP(z)|.

Proof. Let P∩C ≤ P0 ∈ Sylp(C). Theorem 4.11 yields that P0 ≤ P1 ∈ Sylp(G, z) and by Lemma
4.12 there exists an x ∈ C such that P = Px

1. But then Px
0 ≤ CP1 (z)x = CP(z) = P ∩ C and

therefore P ∩ C is already a Sylow p-subgroup of C. For the second statement, Corollary 4.10
gives |G| = |C||K| and thus |P| = |G|p = |C|p|K|p. On the other hand

|P| = |CP(z)||P : CP(z)| = |CP(z)||IP(z)| = |C|p|IP(z)|

by the previous paragraph. Hence |K|p = |IP(z)|.

5. A minimal counterexample to Glauberman’s Z∗-Theorem

Throughout this section we assume the following:

Hypothesis 5.1. Let G be a counterexample to Glauberman’s Z∗-Theorem such that in every
proper subgroup or factor group of G the Z∗-Theorem holds. Let z be an isolated involution with
z < Z∗(G) and set K := {zzg | g ∈ G}. Let C := CG(z) and let M be a maximal subgroup of G
containing C.

We point out that Hypothesis 5.1 holds in a minimal counterexample to the Z∗-Theorem with
respect to the order of the group.
We begin by collecting some initial observations which we use frequently.

Lemma 5.2.

(1) If z ∈ H < G, then z ∈ Z∗(H). Hence H = CH(z)O(H) and in particular H ∩ K ⊆ O(H).
Moreover, O2′,2(C) ∩ H ≤ O2′,2(H), z centralises E(H) and I∗H(〈z〉, p) ⊆ Sylp(H) for all
p ∈ π(H).

(2) r2(G) ≥ 2.
(3) G possesses at least two conjugacy classes of involutions.
(4) K generates a subgroup of even order.

Proof. The first statement in (1) follows directly from the minimality of G and implies the rest.
For the last assertion note that we may suppose that p is odd. Then Coprime Action (d) gives
z-invariant Sylow p-subgroups of O(H) and the statement follows. If r2(G) = 1, then the Sylow 2-
subgroups of G are cyclic or quaternion and hence Theorem 3.11 or the Brauer-Suzuki Theorem,
respectively, yield a contradiction. This proves (2). Then (3) follows from (2) and the fact that
G has a conjugacy class of isolated involutions. For (4) note that 〈K〉 = [G, z] E G. If this group
has odd order, then G is not a counterexample.
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Lemma 5.3. G = F∗(G)〈z〉 and F∗(G) is simple.

Proof. We apply Lemma 4.1 (7) to deduce O(G) = 1. Next we show that G = 〈zG〉. Assume
that H := 〈zG〉 < G and note that H E G. Then z ∈ Z∗(H) = Z(H) by hypothesis and because
O(H) ≤ O(G) = 1. Hence z commutes with all its conjugates in G. But z is isolated and therefore
this implies z ∈ Z(G), a contradiction. We note that z centralises O2(G) by Lemma 4.1 (2).
However, if z ∈ O2(G), then zg ∈ O2(G) for all g ∈ G and therefore z commutes with all its
conjugates, a contradiction. This forces z < O2(G).
Let N be a minimal normal subgroup of G and first suppose that N is a 2-group. Then N ≤ O2(G)
is centralised by z (by Lemma 4.1 (2)) and therefore by all conjugates of z . But as G = 〈zG〉,
this means that Z(G) contains N and therefore an involution t. In the factor group G := G/〈t〉 we
have z ∈ Z∗(G) by hypothesis and Lemma 4.1 (7). Now let X E G be such that X = O(G). Then
〈t〉 ∈ Syl2(X) and finally X = 〈t〉 by Theorem 3.11 and because O(X) ≤ O(G) = 1. Therefore
z ∈ Z∗(G) = Z(G) which means that z ∈ O2(G), a contradiction. We conclude that N is of even
order, but not a 2-group, and in particular F(G) = 1. Assume that N〈z〉 < G. Then z ∈ Z∗(N〈z〉)
by Lemma 5.2 (1) and therefore [N, z] ≤ N ∩ O(N〈z〉) = 1. This implies that N centralises z and
all its conjugates which means that N ≤ Z(G) = 1, a contradiction. Hence N〈z〉 = G.
Finally let Y be a minimal normal subgroup of N and assume that Y , N. Then Y is not z-
invariant because otherwise Y EG, further Y∩Yz = 1 and Y has even order. It follows by Lemma
4.1 (2) that z centralises a non-trivial 2-subgroup of Y . This subgroup therefore lies in Y∩Yz = 1,
a contradiction. Thus N = F∗(G) is simple.

Lemma 5.4.

(1) Let 1 , N E G. Then G = N〈z〉.
(2) Let H be a maximal subgroup of G containing a conjugate of z . Then H = NG(X) for

every non-trivial normal subgroup X of H.
(3) 〈K, z〉 = G.

Proof. For (1) we apply Lemma 5.3 to see that N〈z〉 = (N ∩ F∗(G))〈z〉, with Dedekind’s Law.
But F∗(G) is simple, so N∩F∗(G)EF∗(G) forces N∩F∗(G) = F∗(G) (which gives the assertion)
or N ∩ F∗(G) = 1. The latter means that N = 〈z〉 is normal in G, a contradiction.
For (2) let 1 , X E H and let z′ ∈ zG ∩ H. We note that z′ is isolated, in fact z′ has precisely
the same properties as z . In particular Lemma 5.3 (and therefore (1) above) is applicable for z′

instead of z . The maximality of H implies that NG(X) = H or NG(X) = G. In the second case
we deduce from (1), applied for z′, that G = X〈z′〉 ≤ H which is impossible.
(3) follows from (1) because 〈K〉 is a non-trivial normal subgroup of G.

The previous result shows that G behaves almost like a simple group. We therefore refer to
property (1) in Lemma 5.4 above by saying that G is z-simple. It turns out that a similar statement
holds for every isolated involution of G.

Lemma 5.5. Let a ∈ G be an isolated involution. Then a < Z∗(G), but a ∈ Z∗(H) for all proper
subgroups H of G containing a. Moreover G is a-simple, i.e. G = N〈a〉 for every non-trivial
normal subgroup N of G.
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Proof. We may suppose that a , z. By Lemma 5.3 we have O(G) = 1 and Z∗(G) = Z(G) = 1.
In particular a < Z∗(G). But as the Z∗-Theorem holds in every proper subgroup of G, we have
a ∈ Z∗(H) whenever a ∈ H < G. Now suppose that N is a non-trivial proper normal subgroup
of G. Then N is simple by Lemma 5.3. In particular Z∗(N) = 1 which implies that a < N. But
|G : N | = 2 with Lemma 5.4 (1) and therefore N〈a〉 = G.

Lemma 5.6. Let t ∈ zG and set n := |M : C|. Suppose that t < M. Let D := M ∩ Mt and let I
denote the set of elements in D which are inverted by t. Then the following hold:

(1) D = O(D)CD(t)
(2) I, and hence D, is transitive on zM .
(3) M = CI. More precisely, every coset of C in M contains exactly one element of I.
(4) |I| = |D : CD(t)| = |D : CD(z)| = n.
(5) Let q ∈ π(G) and Q ∈ Sylq(D, t). Then |IQ(t)| = nq.

Proof. As D is t-invariant amd t is isolated, we have D〈t〉 = O(D〈t〉)CD〈t〉(t). Hence [D, t] ≤
D ∩ O(D〈t〉) ≤ O(D) which gives the first statement.
Let u ∈ zM . Then u and zt are conjugate, by Sylow’s Theorem, because uzt has odd order (Lemma
4.1 (3)). In fact there exists an involution s ∈ 〈u, zt〉 such that us = zt. Now u = zts. On the other
hand, since u ∈ zM , Lemma 4.1 (4) yields that z and u are also conjugate in M. Choose x ∈ M
such that ux = z. Then z = ux = ztsx and therefore tsx ∈ C. This yields ts ∈ M because
〈x,C〉 ≤ M. As ts is inverted by t, it follows that ts ∈ M ∩ Mt = D and thus ts ∈ I. This gives
the second statement and implies M = CI. To finish the proof of (3), let x1, x2 ∈ I be such that
Cx1 = Cx2. Then x1x−1

2 ∈ C. But x1t and x2t are involutions which are conjugate to t and thus
to z . Therefore x1tx2t = x1t(x2t)−1 = x1x−1

2 ∈ C. Lemma 4.4 implies that x1t = x2t and finally
x1 = x2.
For (4), we apply Lemma 4.9 to the isolated involution t in D〈t〉 and it follows that I is a set
of representatives for the cosets of CD(t) in D. To prove (5) we observe that, since t is isolated
in D〈t〉, we may apply Lemma 4.15. From there we obtain that CQ(t) ∈ Sylq(CD(t)) and that
nq = |D : CD(t)|q = |Q : CQ(t)| = |IQ(t)|.

Lemma 5.7. Suppose that C is a maximal subgroup of G and let p ∈ π(F(C)). Then C contains
a Sylow p-subgroup of G and every z-invariant p-subgroup of G is centralised by z .

Proof. Let P ∈ Sylp(C). Then z ∈ CG(P) ≤ CG(Op(C)). But NG(Op(C)) = C by Lemma 5.4 (2),
so it follows that CG(P) ≤ C. Now if we set X := CG(P) and Y := NG(P), then Lemma 4.1 (6)
yields Y = XCY (z). But X and CY (z) are both contained in C, thus NG(P) = Y ≤ C. This implies
that P ∈ Sylp(G). The rest follows from Theorem 4.11 and Lemma 4.12.

Lemma 5.8. Suppose that C is a maximal subgroup of G and let π := π(F(C)). Let z ∈ H < G.
Then [H, z] is a π′-group.

Proof. Let H0 := [H, z] and note that H0 has odd order by Lemma 5.2 (1). Assume that
p ∈ π ∩ π(H0). Then Coprime Action (d) implies that I∗H0

(〈z〉, p) ⊆ Sylp(H0). Lemma 5.7
yields that every z-invariant p-subgroup of H0 is centralised by z . Thus Lemma 2.2 gives

17



H0 = CH0 (z)Op′ (H0). But this means that H0 = [H0, z] ≤ Op′ (H0), contrary to our choice of
p.

Lemma 5.9. Suppose that q is a prime such that Oq(M) � C. Then M does not contain a Sylow
q-subgroup of G.

Proof. First we observe that q is odd by Lemma 4.1 (2). With Lemma 5.2 (1) we choose Q ∈
Sylq(M, z) and assume that Q ∈ Sylq(G, z). As Oq(M) � C, we have 1 , X := IOq(M)(z). If we
set n := |M : C|, then Lemma 4.15 implies that 1 , |IQ(z)| = nq. Our objective is to show that X
lies in every conjugate of M in G.
We see that X is C-invariant and hence Lemma 4.12 gives that X is contained in every z-invariant
Sylow q-subgroup of G. For the same reason every z-invariant q-subgroup of G lies in M. Now
let g ∈ G\M and M1 := Mg. We look at D := M1 ∩ Mz

1 and see that D = CD(z)O(D) and
|D : CD(z)| = n by Lemma 5.6 (1) and (4). If we choose T ∈ Sylq(D, z), then part (5) of the same
lemma yields |IT (z)| = nq , 1. Moreover T ≤ M because T is z-invariant. But then it follows that
IT (z) = IQc (z) = (IQ(z))c for a suitable element c ∈ C and finally X = Xc−1

⊆ IT (z) ⊆ D ≤ M1.
Hence

1 , X ⊆ N :=
⋂
g∈G

Mg E G.

By Lemma 5.4 (1) we have N〈z〉 = G. But N〈z〉 ≤ M, a contradiction.

The last lemma of this section plays a role as soon as we bring several involutions into the picture
at the same time.

Lemma 5.10. Let x ∈ C\{z} be an involution. Then CG(x) � M.

Proof. Let w := zx. Then we have 1 , 〈wG〉 E G and Lemma 5.4 (1) implies G = 〈wG〉〈z〉. In
particular 〈wG〉 � M and thus there exists a conjugate u of w which is not contained in M and
thus does not centralise z . We note that w and z are distinct and commute. As z is isolated, this
implies that w and z are not conjugate and it follows that u and z are not conjugate. Now set
D := 〈u, z〉. By Lemma 4.1 (5) we know that the order of uz is even and not divisible by 4. More
precisely the Sylow 2-subgroups of D are elementary abelian of order 4 and contain the unique
central involution v of D. As u ∈ CG(v) and u < M, we have CG(v) � M. Let z ∈ T ∈ Syl2(D)
and let d ∈ D be such that ud ∈ T . It follows that T = 〈z, ud〉 and hence v = zud. But ud (= zv)
and w (= zx) both centralise z and therefore they are conjugate in C by Lemma 4.2. Thus v = zud

and x = zw are conjugate in C and CG(v) � M implies that CG(x) � M.

6. Maximal subgroups containing C

In this chapter we use the Bender method to investigate under which assumptions C is a maximal
subgroup. We obtain even stronger results in the following section by considering a carefully
chosen elementary abelian subgroup of order 4 which contains z . Throughout, we assume Hy-
pothesis 5.1. Note that this implies in particular that G is z-simple (Lemma 5.4 (1)).
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Definition. Let H and L be maximal subgroups of G. Then we say that H infects L and we write
H # L if there exists a subgroup A of F(H) such that ACF∗(H)(A) ≤ L .

Lemma 6.1. Suppose that H and L are maximal subgroups of G which both contain a conjugate
of z and suppose that H infects L . Let σ := π(F(H)). Then the following hold:

(1) Z(F(H))E(H) ≤ L .
(2) [E(H),Oq(L)] = 1 for all q ∈ σ.
(3) If E(H) , 1 or |σ| ≥ 2, then Fσ(L) ≤ H.

Proof. By hypothesis, there exists an involution z′ ∈ zG ∩ H. Hence if 1 , X E H, then Lemma
5.4 (2) yields that H = NG(X). Similarly L = NG(Y) whenever 1 , Y E L .

(1) Let A ≤ F(H) be such that ACF∗(H)(A) ≤ L . Then Z(F(H)) centralises A and [E(H), A] ≤
[E(H), F(H)] = 1. Hence it follows that Z(F(H))E(H) ≤ CF∗(H)(A) ≤ L .

(2) Let q ∈ σ and Q := Z(Oq(H)). Then 1 , Q E H and by (1) we have Q ≤ L . Moreover
NG(Q) = H and therefore COq(L)(Q) ≤ H normalises E(H). Conversely E(H), which lies
in L by (1), normalises COq(L)(Q). Hence [COq(L)(Q), E(H)] = 1 and then the fact that
Oq(E(H)) = E(H) yields that we can apply Thompson’s P×Q-Lemma. It gives that E(H)
centralises Oq(L) as stated.

(3) If E(H) , 1 then, by (2), we have Fσ(L) ≤ NG(E(H)) = H. Now suppose that |σ| ≥ 2 and
let p, q ∈ σ be distinct. Again let Q := Z(Oq(H)) and set P := Z(Op(H)). Then 1 , P
is q-perfect (i.e. P = Oq(P)) and lies in L by (1). On the other hand COq(L)(Q) lies in H
and therefore [COq(L)(Q), P] ≤ Oq(L) ∩ P = 1. Once more we may apply Thompson’s
P × Q-Lemma and obtain Oq(L) ≤ CG(P) ≤ H. Repeating this argument for all primes in
σ yields the statement.

The next theorem is essential for the Bender method. The result is, in fact, due to Bender and
is usually stated for maximal subgroups of simple groups. We felt that the fact that G is only z-
simple makes the quotation of theorems for simple groups slightly inconvenient - so rather than
doing that and dealing with case distinctions every time, we decided to rephrase Bender’s results
for our purpose and to give a proof.

Theorem 6.2 (Infection Theorem). Let H and L be maximal subgroups of G which both contain
a conjugate of z and suppose that H infects L . Set σ := π(F(H)).

(1) Fσ′ (L) ∩ H = 1.
(2) If q is a prime such that Oq(H) , 1 and char(L) = q, then char(H) = q.
(3) If L # H, then H = L unless char(H) = q = char(L) where q is prime.
(4) If E(L) ≤ H and π(F(L)) ⊆ σ, then H = L unless char(H) = q = char(L) where q is

prime.
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(5) If H and L are conjugate and E(L) = 1, then H = L unless char(H) = q = char(L) where
q is prime.

Proof. Let A ≤ F(H) be such that ACF∗(H)(A) ≤ L and note that, by Lemma 6.1 above, we have
Z(F(H))E(H) ≤ L . In the statements (1)-(4) we use that H = NG(X) whenever 1 , X E H and
similarly L = NG(Y) whenever 1 , Y E L , by Lemma 5.4 (2).

(1) As F := Fσ′ (L) ∩ H acts coprimely on F(H), we can apply Coprime Action (c) to the
subnormal centraliser closed subgroup ACF(H)(A) of F(H). Hence from [F, ACF(H)(A)] ≤
F ∩ F(H) = 1 we deduce [F, F(H)] = 1. On the other hand, F and E(H) normalise each
other and therefore [F, E(H)] = 1. Thus F ≤ CH(F∗(H)) = Z(F(H)) which yields F = 1.

(2) Suppose that char(L) = q. By Lemma 6.1 (2) we have that E(H) centralises Oq(L) = F∗(L).
But then E(H) ≤ CL(F∗(L)) = Z(F∗(L)) and thus E(H) = 1. Now let P1 := Oq′ (Z(F(H))),
let Q := Z(Oq(H)) and note that COq(L)(Q) ≤ H and P1 ≤ L by Lemma 6.1 (1). So we
consider the action of P1×Q on Oq(L) = F∗(L) and see that [COq(L)(Q), P1] ≤ Oq(L)∩P1 =

1. Thompson’s P × Q-Lemma yields [Oq(L), P1] = 1. Therefore P1 ≤ CL(F∗(L)) =

Z(F∗(L)). But then P1 = 1 and thus F(H) = F∗(H) is a q-group.
(3) From Lemma 6.1 (1) we know that Z(F(H)) ≤ L and Z(F(L)) ≤ H. Together with (1) this

yields that π(F(L)) = σ. Again by Lemma 6.1 (1) we have E(H), E(L) ≤ H ∩ L, thus each
component of H or L is a component of H ∩ L . If F(H) = F(L) = 1, then it follows that
E(H) = E(L) which immediately means H = L . Therefore we may suppose that F(H)
and F(L) are not both trivial. As π(F(L)) = σ, this implies F(H) , 1 , F(L). We are done
if one of F∗(L) or F∗(H) is a q-group for some prime q because then π(F(L)) = σ = {q},
by (2). Thus we may suppose that both F∗(L) and F∗(H) are not q-groups. Then Lemma
6.1 (3) implies that F(H) ≤ L and also F(L) ≤ H because L infects H. So we have
F∗(H) ≤ L and F∗(L) ≤ H. Let p ∈ σ and set P := Op(H) and R := Op(L). Note that
PF(L) = PR × Fp′ (L) is nilpotent. By the previous paragraph we have [P,Op(F∗(L))] = 1
and it follows that

[P,CL(R)] ≤ CL(Op(F∗(L))) ∩CL(R) ≤ CL(F∗(L)) ≤ Z(F(L)).

In particular PF(L) is CL(R)-invariant. But then it follows that PR = Op(PF(L)) is nor-
malised by CL(R) and therefore [P,Op(CL(R))] = 1. Hence we have Op(CL(R)) ≤ CH(P)
and symmetry yields 1 , Op(CH(P)) = Op(CL(R)), implying H = L .

(4) By (2) we are done if F∗(L) is a q-group for some prime q. Now suppose that F∗(H) is a
q-group. Then by hypothesis, π(F(L)) ⊆ σ = {q}, and the result follows if E(L) = 1. As
E(L) ≤ H with Lemma 6.1 (1), the subgroups E(L) and ACF∗(H)(A) normalise and hence
centralise each other. Thus Thompson’s P × Q-Lemma yields [F∗(H), E(L)] = 1. (Note
that F∗(H) = Oq(H).) It follows that E(L) ≤ CH(F∗(H)) = Z(F(H)) and finally E(L) = 1.
Thus char(L) = q.
Suppose now that F∗(H) is not a q-group. We have π(F(L)) ⊆ σ and thus parts (1) and (3)
of Lemma 6.1 imply that F∗(L) ≤ H. Therefore L # H and we can apply (3).

(5) By hypothesis, E(L) = 1 and π(F(L)) = π(F(H)). Thus part (4) yields the result.
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There is a technical detail to sort out before we can state the main theorem of this section (a
restatement of Theorem A). We define a setM of maximal subgroups of G containing C in the
following way: If the set

{H ≤ G | C ≤ H, H is maximal in G and there exists a p ∈ π(F(H)) such that COp(H)(z) = 1}

is non-empty, then M is defined to be this set. Otherwise, M is just the set of all maximal
subgroups of G containing C.

Theorem 6.3. Assume Hypothesis 5.1 and let M ∈ M. Then one of the following holds:
- M = C.
- char(M) = p for some odd prime p.
- E(M) , 1.

We proceed by contradiction and begin with a few preparatory results. Then we formulate the
main hypothesis for this section.

Definition. Let t ∈ G be an involution. Then a t-invariant 2′-subgroup W of G is called t-
minimal if W is minimal with respect to being invariant under CG(t), but not centralised by
t.

Lemma 6.4. Suppose that C , M. Then there exists a prime p ∈ π such that Op(M) contains a
z-minimal subgroup U and U = [U, z].

Proof. With Lemma 5.2 (1) we have z ∈ Z∗(M), but z < Z(M) by hypothesis. Assume that
[F(M), z] = 1. Then Lemma 5.2 (1) yields z ∈ CM(F∗(M)) ≤ Z(F(M)) and hence z ∈ O2(M). But
z is isolated and centralises O2(M) (Lemma 4.1 (2)), so this implies z ∈ Z(M), a contradiction.
Thus we have [F(M), z] , 1. As z centralises O2(M), there exists an odd prime p such that
[Op(M), z] , 1 and Op(M) then contains a z-minimal subgroup U. The minimality of U implies
U = [U, z].

We collect a few applications of Lemma 3.6 which enable us to bring the Bender method into
action.

Lemma 6.5 (Basis Lemma). Let z ∈ L < G and let a ∈ O2′,2(C) be an involution.

(1) If F ≤ L is a nilpotent CL(z)-invariant subgroup, then [F, z] ≤ F(L).
(2) [F(M) ∩ L, z] ≤ F(L).
(3) Suppose that C < M and that p ∈ π is such that Op(M) contains a z-minimal subgroup U.

If U ≤ L , then U ≤ Op(L).
(4) Let X ≤ M be a CM(a)-invariant nilpotent 2′-subgroup. Then [X, a] ≤ F(M).
(5) Suppose that Ua is an a-minimal subgroup of G. If a ∈ L and Ua ≤ L, then we have

Ua = [Ua, a] ≤ F(L).

Proof. By hypothesis and Lemma 5.2 (1) we have z ∈ Z∗(L) and therefore [F, z] ≤ [L, z] ≤
O(L). Hence [F, z] is a nilpotent CL(z)-invariant 2′-subgroup of L . By Lemma 3.6 and Coprime
Action (a) we obtain [F, z] = [F, z, z] ≤ F(L) which is the first result.
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The second part follows from the first because F(M)∩L is a nilpotent CL(z)-invariant subgroup of
L . For (3) we note that U = [U, z] ≤ [F(M) ∩ L, z] ≤ F(L) by (2). To obtain the fourth assertion
we may apply Lemma 3.6 for a and X (with Lemma 5.2 (1)) which yields [X, a] ≤ F(M).
For (5) we recall that Ua has odd order and is CG(a)-invariant. By Lemma 5.2 (1), we have
a ∈ O2′,2(L) and hence another application of Lemma 3.6 gives the result.

Lemma 6.6. Suppose that C < M and let p ∈ π be such that Op(M) contains a z-minimal
subgroup U. Then [Op(C),U] = 1 and in particular [CF(M)(z),U] = 1.

Proof. Assume that [Op(C),U] , 1 and let U0 := CU(Op(C)). Then U0 is centralised by z
because of the minimal choice of U. Thus Thompson’s P × Q Lemma yields [U, z] = 1, a
contradiction. The assertion follows since [Op′ (M),U] ≤ [Op′ (M),Op(M)] = 1.

Lemma 6.7. Suppose that C < M ∈ M . Let H be a maximal subgroup of G containing C and
suppose that M # H. Then M = H or char(M) = char(H) = p.

Proof. By Lemma 5.2 (1) we have E(H) ≤ M. Now we show that π(F(H)) ⊆ π in order to apply
the Infection Theorem (6.2), part (4). Assume that F := Fπ′ (H) is non-trivial. By part (1) of the
Infection Theorem, F ∩ M ≤ Fπ′ (H) ∩ M = 1. In particular, F ∩ C = 1 which means that F is
inverted by z . Hence, as M ∈ M, there exists a prime q such that Q := Oq(M) is inverted by z .
In particular Q is abelian, so Q ≤ Z(F(M)) ≤ H by Lemma 6.1 (1). Now F is inverted by z and
normalised by Q which implies that Q = [Q, z] centralises F. Therefore F ≤ CG(Q) ≤ M and it
follows F = F ∩ M = 1. Applying part (4) of the Infection Theorem yields that M = H unless
char(M) = char(H) = p.

Corollary 6.8. Suppose that C < M ∈ M . If |π(F(M))| ≥ 2, then M is the unique maximal
subgroup of G containing NG(U).

Proof. Suppose that NG(U) is contained in a maximal subgroup H of G. Then as U lies in F(M)
and UCF∗(M)(U) ≤ NG(U) ≤ H, we have M # H. On the other hand, U is C-invariant which
implies C ≤ H. Thus Lemma 6.7 and the hypothesis |π(F(M))| ≥ 2 force H = M.

Lemma 6.9. Suppose that C < M and that 1 , X ≤ F(M) is a 〈z〉U-invariant subgroup. Let
H be a maximal subgroup of G containing NG(X). If NG(U) ≤ M, then M = H or char(M) =

char(H) = p. In particular if M ∈ M and |π(F(M))| ≥ 2, then NG(X) ≤ M.

Proof. By hypothesis, X ≤ F(M) and hence NG(X) ≤ H means that M # H. On the other
hand we have 〈z〉U ≤ H and thus the Basis Lemma (3) yields U ≤ Op(H). If NG(U) ≤ M, then
H infects M and the Infection Theorem (3) yields the statement. If M ∈ M and |π| ≥ 2, then
NG(U) ≤ M by Corollary 6.8 which means that again H # M. But this time part (3) of the
Infection Theorem only leaves the possibility M = H.

Hypothesis 6.10. Assume Hypothesis 5.1 and let M ∈ M .
In addition, assume that C < M, let π := π(F(M)) and suppose that |π| ≥ 2. Let p ∈ π be such
that Op(M) contains a z-minimal subgroup U.
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From now on, until the proof of Theorem A, we assume Hypothesis 6.10. We recall that, by
Lemma 5.2 (1), we have I∗M(〈z〉, p) ⊆ Sylp(M). For the remainder of this section we let P ∈
Sylp(M, z) and Z := Ω1(Z(P)).

Lemma 6.11. Z � Op(M). In particular Z is not cyclic.

Proof. By Hypothesis 6.10 and Lemma 5.9 we have P < Sylp(G, z) and therefore NG(P) is
not contained in M. Assume that Z ≤ Op(M). As [U,Z] = 1 and Z is z-invariant, we can
apply Lemma 6.9 to Z and see that NG(Z) ≤ M since M is not of characteristic p. But then
NG(P) ≤ NG(Z) ≤ M, a contradiction. The second assertion follows because, if Z is cyclic, then
|Z| = p and 1 , Z ∩ Op(M) forces Z ≤ Op(M).

Lemma 6.12. Suppose that 1 , X = [X, z] ≤ Op(M) and that rp(CC(Op(M))) ≥ 2. Then M is
the unique maximal subgroup of G containing NG(X).

Proof. Let NG(X) be contained in a maximal subgroup H of G. As X ≤ Op(M), we have M # H.
By hypothesis, there exists an elementary abelian p-subgroup W ≤ CC(Op(M)) of order at least
p2. We note that W and z both lie in H. Our objective is to apply the Infection Theorem (4)
and so we show first that F := Fπ′ (H) is trivial, i.e. F(H) is a π-group. We apply the Infection
Theorem, part (1), to see that F ∩M ≤ Fπ′ (H)∩M = 1. In particular F ∩C = 1, so F is inverted
by z .
Let w ∈ W# and let L be a maximal subgroup of G containing CG(w). By hypothesis, z ∈ CG(W)
and since W ≤ CC(Op(M)) ≤ CC(U), it follows that U〈z〉 ≤ L . The Basis Lemma (3) implies
that U ≤ Op(L). Hence the fact that M is not of characteristic p and Corollary 6.8 give that L
infects M. As we observed above, F is inverted by z, in particular CF(w) ≤ L is inverted by z . It
follows that CF(w) = [CF(w), z] ≤ [L, z] ≤ O(L) because z ∈ Z∗(L), with Lemma 5.2 (1). Since
X ≤ CG(W) ≤ L, we also have X = [X, z] ≤ O(L).
By the Basis Lemma (2) we have X = [X, z] ≤ [Op(M)∩H, z] ≤ Op(H) and this forces [F, X] = 1.
Thus Lemma 3.5 gives

CF(w) = CCF (w)(X) ≤ Op′ (CO(L)(X)) ≤ Op′ (O(L)) ≤ Op′ (L).

As U ≤ Op(L), it follows that [U,CF(w)] = 1. By Coprime Action (b) and since W is not cyclic,
we have F = 〈CF(w) | v ∈ W#〉 and thus [U, F] = 1. Now Corollary 6.8 and the hypothesis that
M is not of characteristic p imply that F ≤ NG(U) ≤ M. This forces F = F ∩ M = 1 and hence
π(F(H)) ⊆ π. Moreover z centralises E(H) by Lemma 5.2 (1). Therefore E(H) ≤ C ≤ M and the
Infection Theorem (4) yields M = H.

Lemma 6.13. Suppose that 1 , X = [X, z] is a subgroup of Op(M). Then M is the unique
maximal subgroup of G containing NG(X).

Proof. Let H be a maximal subgroup of G which contains NG(X). Then M # H. We apply the
Infection Theorem (4) once more and argue as in the proof of Lemma 6.12.
First we observe that by Lemma 5.2 (1), we have E(H) ≤ CH(z) ≤ M. Thus it only remains
to show that F(H) is a π-group. Let F := Fπ′ (H). Since z ∈ H, an application of the Basis
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Lemma (2) yields that X = [X, z] ≤ [Op(M) ∩ H, z] ≤ Op(H) and thus [F, X] = 1. We know
that Z is elementary abelian of order at least p2, by Lemma 6.11. As [Z,Op(M)] = 1, we are
done by Lemma 6.12 if [Z, z] = 1. Thus we may suppose that [Z, z] , 1, i.e. Z possesses an
element w , 1 which is inverted by z . The subgroup F is also inverted by z by part (1) of the
Infection Theorem. On the other hand w ∈ Z ≤ CG(X) ≤ H which implies that F is w-invariant.
We conclude that F is centralised by 〈w〉 = [〈w〉, z]. Now let L be a maximal subgroup of G
containing NG(〈w〉). Then z, X, U, Z and – as we have just seen – F are contained in L . The
Basis Lemma (parts (2) and (3)) yields that X and U are both contained in Op(L) and hence in
Op(CG(w)). By Lemma 5.2 (1) we have z ∈ Z∗(L) and therefore F, which is inverted by z, lies in
O(L). Lemma 3.5 gives

F ≤ Op′ (CG(X)) ∩CO(L)(w) ≤ Op′ (CO(CG(w))(X)) ≤ Op′ (CG(w)).

As U ≤ Op(CG(w)), it follows that [U, F] = 1 and therefore F is contained in CG(U) ≤ M, with
Corollary 6.8 and our hypothesis that M is not of characteristic p. But then F = F ∩ M = 1 and
the Infection Theorem (4) gives the statement.

From now on, until the proof of Theorem 6.3, we assume that E(M) = 1, i.e. M is a counterex-
ample to Theorem 6.3.

Lemma 6.14. Suppose that W is an elementary abelian subgroup of M of order p2 which is
centralised or inverted by z . Then z inverts W and [COp(M)(W), z] = 1. In particular CP(z) is
cyclic.

Proof. Assume that W is a counterexample, so [W, z] = 1 or [COp(M)(W), z] , 1. If [W, z] = 1,
then Thompson’s P × Q-Lemma yields [COp(M)(W), z] , 1 because, by hypothesis, Op(M) is
not centralised by z . We conclude that COp(M)(W) possesses an element x of order p which is
inverted by z . By Lemma 5.2 (1), W lies in a z-invariant Sylow p-subgroup of M, so we may
suppose that W ≤ P. Lemma 5.9 implies that P < Sylp(G) and in particular NG(P) � M. Thus
we find an involution t ∈ NG(P) such that t is conjugate to z and M , Mt (Lemma 4.9). Now
P = Pt ≤ M ∩ Mt and therefore W〈x〉 ≤ M ∩ Mt. In particular W〈x〉 acts on Q := Op′ (Mt). As
W is elementary abelian and not cyclic, Coprime Action (b) yields that Q = 〈CQ(w)|w ∈ W#〉.
Let w ∈ W# and set L := NG(〈w〉). Then z ∈ L and thus the Basis Lemma (2) gives 〈x〉 =

[〈x〉, z] ≤ [Op(M) ∩ L, z] ≤ Op(L). It follows that [x,CQ(w)] ≤ Op(L) ∩ Q = 1 and therefore
CQ(w) ≤ CG(x). So we have Q ≤ CG(x). But as 1 , 〈x〉 = [〈x〉, z] ≤ Op(M), Lemma 6.13
implies CG(x) ≤ M. Thus Q ≤ M and also Op(Mt) ≤ P ≤ M. This gives F∗(Mt) = F(Mt) ≤ M
(E(Mt) = 1 because by hypothesis E(M) = 1). But this means that Mt infects M. As both M
and Mt contain a conjugate of z and are not of characteristic p, part (5) of the Infection Theorem
forces M = Mt. This is impossible. In particular r(CP(z)) = 1.

Lemma 6.15. Z is elementary abelian of order p2 and |CZ(z)| = |IZ(z)| = p. In fact, CZ(z) is the
unique subgroup of P of order p which is centralised by z and IZ(z) is the unique subgroup of P
of order p which is inverted by z .
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Proof. First we observe that Op(M) ∩ Z , 1 and that |Z| ≥ p2 by Lemma 6.11. With Coprime
Action (a) we have Z = CZ(z) × [Z, z] = CZ(z) × IZ(z). Assume that IZ(z) possesses a subgroup
V of order p2. Then [COp(M)(V), z] = 1 by Lemma 6.14, but on the other hand V ≤ Z(P) is
centralised by Op(M). So [Op(M), z] = 1, a contradiction. In particular, as |Z| ≥ p2, it follows
that Z is not inverted by z. Lemma 6.14 yields that, on the other hand, Z cannot be centralised by
z. Hence CZ(z) also has order p and is, by the same lemma, the unique subgroup of P of order p
which is centralised by z .
It remains to show that IZ(z) is the only subgroup of P of order p which is inverted by z . First
assume that Y ≤ Op(M) is distinct from IZ(z), has order p and is inverted by z . Then W := YIZ(z)
is elementary abelian of order p2 and we may apply Lemma 6.14. Thus [Y, z] ≤ [COp(M)(W), z] =

1, a contradiction. Next assume that Y1 ≤ P is distinct from IZ(z), has order p and is inverted
by z . Then W1 := Y1IZ(z) is elementary abelian of order p2, and Lemma 6.14 yields [IZ(z), z] ≤
[COp(M)(W1), z] = 1, again a contradiction.

Lemma 6.16. Op(M) is a cyclic group which is inverted by z .

Proof. We know from Lemma 6.15 that IZ(z) is the unique subgroup of order p in Op(M) which
is inverted by z . If there is any subgroup of order p centralised by z in Op(M), then, again with
Lemma 6.15, it can only be CZ(z). But Z � Op(M) by Lemma 6.11. Therefore COp(M)(z) = 1 and
it follows that Op(M) is abelian and contains a unique subgroup of order p. This forces Op(M)
to be cyclic.

Lemma 6.17. Z = Ω1(P).

Proof. We have Z ≤ Ω1(P). Assume that there exists a subgroup of P of order p which is not
contained in Z. Then as Z ≤ Z(P), it follows that r(P) ≥ 3. But P is z-invariant, so by Lemma
2.1 there exists a z-invariant elementary abelian subgroup X of P of order p3. By Coprime
Action (a), we have X = CX(z) × [X, z]. But by Lemma 6.15, every element in X which is
centralised or inverted by z lies in Z. This yields X ≤ Z, a contradiction. Hence Ω1(P) ≤ Z.

Lemma 6.18. IZ(z) is contained in every conjugate of M in G.

Proof. Let g ∈ G\M, let t ∈ zG ∩ Mg and set D := M ∩ Mt. We note that, by Lemma 4.1 (8),
the involution t is not contained in M. As z does not centralise P, Lemmas 4.15 and 5.6 (4) yield
that p divides |M : C| = |D : CD(t)| and therefore |[D, t]| / |[D, t] ∩ CD(t)| is divisible by p. Thus
there exists a subgroup X of D of order p which is inverted by t. We show that X is conjugate to
I := IZ(z).
By Lemma 6.17 we have Z = Ω1(P). Now let P1 ∈ Sylp(NG(Z), z) (with Lemma 5.2 (1)).
Lemmas 6.16 and 6.17 imply that I = Z ∩ Op(M) E M, thus NG(I) = M with Lemma 5.4 (2)
and P = NP1 (I). Let P2 := NP1 (P). By Lemma 5.9 we know that P1 is not contained in M and
therefore |IP2 | = p. Now z leaves CZ(P2) invariant and CZ(P2) , I because P < P2 (i.e. P2 � M)
and CG(I) ≤ M. As I and CZ(z) are precisely the z-invariant subgroups of Z of order p, we
conclude that CZ(P2) = CZ(z).
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We know that X ≤ M. Therefore, by Lemma 6.17 and Sylow’s Theorem, X is conjugate in M to
a subgroup of order p in Z, i.e. to a member of IP2 or to CZ(z). If X is conjugate to CZ(z) then
we may replace X by CZ(z). But then z and t are both contained in NG(X) and hence conjugate in
NG(X) by Lemma 4.1 (4). This is impossible because z centralises X (= CZ(z)) whereas t inverts
it. Thus X is conjugate to I.
Now let y ∈ G be such that X = Iy. Then t ∈ NG(X) = NG(Iy) = My. As every conjugate of z
is contained in a unique conjugate of M, by Lemma 4.1 (8), this yields My = Mg. Now we see
that X ≤ D ≤ M normalises I E M and therefore [X, I] = 1. So we have I ≤ NG(X) = Mg. As
g ∈ G\M was arbitrary, it follows that I lies in every conjugate of M in G, as stated.

Proof of Theorem A.
Assume that Theorem A (i.e. Theorem 6.3 above) fails. Then Hypothesis 5.1 holds and C is
properly contained in M ∈ M. Hence Lemma 6.4 implies that there exists an odd prime p such
that Op(M) contains a z-minimal subgroup U. Again by the failure of Theorem A, we have
F∗(M) , Op(M) and E(M) = 1. It follows that Hypothesis 6.10 is also satisfied and thus the
results which have been proved earlier in this section are applicable. In particular Lemma 6.18
says that M contains a non-trivial subgroup I which lies in every conjugate of M in G. This
means that

1 , I ≤ N :=
⋂
g∈G

Mg E G.

With Lemma 5.4 (1) we deduce that G = N〈z〉 ≤ M, a contradiction.

We conclude with a theorem that is applied in the next chapter, but holds more generally than
under the main hypothesis there. It uses arguments from [3].

Theorem 6.19. Suppose that C is a maximal subgroup of G, that p ∈ π := π(F(C)) is an odd
prime and that Y ≤ Op(C) is elementary abelian of order p3. Then, for all y ∈ Y#, C is the
unique maximal subgroup of G containing CG(y).

Proof. We first observe that, by hypothesis, |π| ≥ 2 since 2 ∈ π. Let A0 := CF(C)(Y), let A :=
A0E(C) and note that z ∈ Z(C) ≤ A. Moreover A0 is centraliser closed in F(C) and contains
Z(F∗(C)). Suppose that A lies in a maximal subgroup H of G. Then we have C # H.

• CG(A) ≤ C and CG(Op(A)) ≤ C for all p ∈ π.

This follows from Lemma 5.4 (2) because Z(F(C)) ≤ A and Op(Z(F(C))) ≤ Op(A).

• CG(A) is a π-group and IC(A, π′) = {1}.

Suppose that x ∈ CG(A) is a π′-element. Since x centralises A0, a centraliser closed
subgroup of F(C), we have [F(C), x] = 1 by Coprime Action (c). Moreover x cen-
tralises E(C) which lies in A. But CG(A) is contained in C and therefore it follows that
x ∈ CC(F∗(C)) = Z(F(C)). Thus x = 1.

For the second assertion let X ∈ IC(A, π′) and note that X has odd order because 2 ∈ π.
First we have [X, A0] ≤ X∩F(C) = 1 and therefore, again by Coprime Action (c), it follows
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that [X, F(C)] = 1. On the other hand [X, E(C)] ≤ X ∩ E(C) E E(C). By the Odd Order
Theorem, E(C) has even order and thus X ∩ E(C) ≤ Z(E(C)). This yields [X, E(C)] = 1
with the 3-Subgroups-Lemma. We conclude that X ≤ CC(F∗(C)) = Z(F(C)) and hence
X = 1.

• 〈IH(A, π′)〉 ≤ Oπ′ (H).

To prove this, let Q ∈ IH(A, π′) and let r ∈ π be odd. We showed above that IC(A, π′) =

{1} and this implies that Q ∩ C = 1, i.e. that Q is inverted by z . As z ∈ H and therefore
z ∈ Z∗(H) by Lemma 5.2 (1), it follows that Q = [Q, z] ≤ [H, z] ≤ O(H).

Set Ar := Or(A). We recall that r is odd and thus Ar ≤ O(C). Hence

Ar ≤ O(C) ∩ H ≤ O(CH(z)) ≤ O(H)

by Lemma 3.5 and because z ∈ O2′,2(H). Let W := O(H)〈z〉. We have z ∈ O2(C) ≤ Or′ (C)
and therefore, since CG(Ar) ≤ C, it follows that z ∈ Or′ (CW (Ar)). As W is soluble and
contains Ar, we may apply Lemma 3.5 once more to obtain z ∈ Or′ (W). We showed
above that Q ≤ O(H) and thus Q = [Q, z] ≤ Or′ (W). Repeating this argument for all
odd primes in π, it follows that Q ≤ Oπ′ (W). But π′ consists of odd primes and thus
Oπ′ (W) = Oπ′ (O(W)) = Oπ′ (O(H)) = Oπ′ (H). Hence Q ≤ Oπ′ (H).

• Let q ∈ π′. Then I∗G(A, q) possesses a unique element Q∗ and Q∗ E C.

We recall that F∗(G) is simple by Lemma 5.3, so that in particular G does not normalise any
non-trivial q-subgroup. Hence we may apply Theorem 3.14 which yields that Oπ′ (CG(A))
is transitive on I∗G(A, q). But Oπ′ (CG(A)) = 1 and therefore I∗G(A, q) has a unique element
Q∗. Let A1 := NF∗(C)(A). Then A1 leaves Q∗ invariant which means that Q∗ ∈ IG(A1, q).
Let Q∗ ≤ Q1 ∈ I∗G(A1, q). As IG(A1, q) ⊆ IG(A, q), it follows that Q1 ≤ Q∗ and so Q∗ is
also the unique member of I∗G(A1, q). But A is subnormal in F∗(C) and thus the previous
argument implies that I∗G(F∗(C), q) = {Q∗}. Hence C normalises Q∗. The fact that F∗(G)
is simple (Lemma 5.3) forces NG(Q∗) < G. As C lies in NG(Q∗) and is a maximal subgroup
of G, we obtain Q∗ ≤ NG(Q∗) = C. Thus Q∗ E C.

• H = C.

As z ∈ A ≤ H we see that E(H) lies in C (Lemma 5.2 (1)). Moreover |π| ≥ 2 by
hypothesis. Thus the Infection Theorem, part (4), yields the statement if Fπ′ (H) = 1.
Assume, therefore, that there exists a prime q ∈ π′ such that F := Oq(H) , 1. Then
F ∈ IH(A, q). We showed in the previous paragraph that I∗G(A, q) has a unique element
Q∗ and that Q∗ lies in C. Now F ≤ Q∗ ≤ C whereas by the Infection Theorem (1) we have
F ∩C ≤ Fπ′ (H) ∩C = 1. This is a contradiction and hence H = C.

Finally A (and then CG(y) for all y ∈ Y#) is contained in a unique maximal subgroup of G, namely
in C.
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7. Maximal subgroups containing the centraliser of an involution in O2′,2(C)

Throughout this chapter, we assume:

Hypothesis 7.1. Assume Hypothesis 5.1 as well as the following:

• Let V = {1, a, b, z} ≤ O2′,2(C) be an elementary abelian subgroup of order 4 and let
V ≤ S ∈ Syl2(G).

• For every v ∈ {a, b, z} let Lv be a maximal subgroup containing CG(v) such that, if possible,
there exists a prime p ∈ π(F(Lv)) with COp(Lv)(v) = 1. (In particular we choose Lz = M ∈
M as in the previous section.)

• Let π := π(F(M)). Whenever CG(v) , Lv, let Uv denote a v-minimal subgroup of G which
is contained in F(Lv). If C , M, then let U be a z-minimal subgroup of G contained in
F(M).

• If a and b are conjugate, then assume La and Lb to be conjugate.

In this section, the idea is to look at maximal subgroups containing the centralisers of z, a and
b, respectively, at the same time. It turns out that a and b are either conjugate or isolated in G.
In both cases, the implied information helps us to bring the Bender method into the picture once
more. The main objective is to show that the centralisers of z, a and b are maximal subgroups of
G.

Lemma 7.2. r2(CG(V)) = 2.

Proof. Assume that r2(CG(V)) > 2 and let V ≤ B where B is elementary abelian of order 8. For
all involutions t ∈ B we have z ∈ CG(t) and V ≤ O2′,2(C) ∩ CG(t) ≤ O2′,2(CG(t)) by Lemma
5.2 (1). Now Theorem 3.13 forces W := 〈O(CG(v)) | v ∈ V#〉 to be a group of odd order. On
the other hand we know that z ∈ Z∗(CG(a)) and therefore CK(a) is contained in O(CG(a)), again
by Lemma 5.2 (1). Similarly CK(b) is contained in O(CG(b)). But by Theorem 4.8 this means
K ⊆ 〈CK(a),CK(b)〉 ≤ W. In particular it implies that 〈K〉 is a normal subgroup of G of odd
order, contradicting Lemma 5.2 (4).

Lemma 7.3. Suppose that a, b ∈ H ≤ G. Then a and b are either conjugate or isolated in H.

Proof. Let V ≤ T ∈ Syl2(H). By Lemma 4.1 (2) we have z ∈ Z(T ). Now if we suppose that a
and b are not conjugate in H, then we have NT (V) = CT (V). But V = Ω1(Z(CT (V))) by Lemma
7.2 and NT (NT (V)) therefore centralises V . This implies that NT (V) is equal to its normaliser in
T and forces T = NT (V) = CT (V). In particular a, b and z are the only involutions in T which
gives the assertion.

Lemma 7.4. G is simple.
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Proof. By Lemma 5.3 we have G = F∗(G)〈z〉 and F∗(G) is simple. We note that N := F∗(G)
intersects non-trivially with V because |G : N | = 2. So without loss of generality we may
suppose that a ∈ N. If a and b are conjugate, then let g ∈ G be such that ag = b. It follows that
z = ab = aag = [a, g] ∈ [N, g] ≤ N and thus G = N. On the other hand if a and b are isolated in
G, then G = N〈a〉 = N with Lemma 5.5. By Lemma 7.3 there are no more cases to consider.

Corollary 7.5. G = 〈CK(a),CK(b)〉 and O2(C) = C.

Proof. By Lemma 7.4 above, G is simple. This yields G = 〈K〉 = 〈CK(a),CK(b)〉 with Theorem
4.8 and moreover O2(C) = C with Corollary 4.3.

Lemma 7.6. r2(G) = 2.

Proof. Set S 0 := S ∩O2′,2(C). Then V ≤ S 0ES and in particular r(S 0) ≥ 2. Assume that S 0 does
not contain any normal elementary abelian subgroup of S of order 4. Then Lemma 3.2 implies
that S 0 is dihedral or semidihedral, in particular |S 0| ≥ 8. It follows that Aut(S 0) is a 2-group.
Now in C := C/O(C) we have S 0 = O2(C) and therefore [O2(C), S 0] = 1. But O2(C) = C by
Corollary 7.5 and therefore [C, S 0] = 1. This is impossible because S 0 is not abelian. Hence we
may suppose that V is normal in S .
Assume that T ≤ S is elementary abelian of order 8. Then CT (V) ≤ V by Lemma 7.2. On
the other hand, as V is normal in S and hence T -invariant, we have |T : CT (V)| ≤ 2. Thus
CT (V) = V . In particular V ≤ T which is not possible by Lemma 7.2. Therefore r2(G) = 2.

Lemma 7.7. Suppose that V ≤ H < G and that CK(a) ⊆ H. Then a and b are isolated in H.

Proof. Assume that a and b are not isolated in H. Then Lemma 7.3 yields that they are conjugate
in H. So by Lemma 4.2 they are conjugate in CH(z). But if x ∈ CH(z) is such that b = ax,
then CK(b) = CK(ax) = (CK(a))x ⊆ H. So Theorem 4.8 forces K to be contained in H. This
contradicts Corollary 7.5.

Lemma 7.8. [V, La] ≤ O(La). If all involutions in V are isolated, then [V,M] ≤ O(M).

Proof. First we observe that a and b are isolated in La by Lemma 7.7. As the Z∗-Theorem
holds in La, this yields [V, La] ≤ O(La). Now suppose that a, b and z are isolated in G. Then
[V,M] ≤ O(M) because the Z∗-Theorem holds in M.

Corollary 7.9. Let V ≤ H < G and suppose that a and b are isolated in H. Then I∗H(V, p) ⊆
Sylp(H) for all p ∈ π(H).

Proof. As the Z∗-Theorem holds in H, we have [H,V] ≤ O(H). Coprime Action (d) yields that
I∗O(H)(V, p) ⊆ Sylp(O(H)) for all p ∈ π(O(H)) and then the statement follows.

Lemma 7.10. Let v ∈ {a, b} and suppose that CG(v) < Lv. Then E(Lv) = 1 = O2(Lv). If C < M,
then E(M) = 1 = O2(M).
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Proof. We may suppose that v = a. Lemma 7.8 yields that [V,O2(La)] ≤ O(La) ∩ O2(La) = 1.
On the other hand z and a are not contained in O2(La) by hypothesis and Lemma 5.10. Hence if
O2(La) , 1, then Lemma 7.2 implies that b is the unique involution in O2(La). But since a and b
are isolated in La by Lemma 7.7, this forces b ∈ Z(La). It follows that CG(a) ≤ La = CG(b) and
thus G ≤ La with Corollary 7.5. This is impossible and hence O2(La) = 1. Moreover, V ≤ Z∗(La)
which is a soluble subgroup of La and thus [V, E(La)] = 1. As V ∩ E(La) ≤ O2(La) = 1, this
implies E(La) = 1 by Lemma 7.2 because components have even order.
Let us finally consider the case where C < M. Let p ∈ π be such that U ≤ Op(M). In particular
p is odd and we note that our choice of M implies that M ∈ M. Assume that t ∈ O2(M)#. Then
|π| ≥ 2, so Hypothesis 6.10 from the previous chapter is satisfied. Now t is centralised by z
(by Lemma 4.1 (2)) and by U. Thus we may apply Lemma 6.9 which yields that CG(t) ≤ M,
contradicting Lemma 5.10. This forces O2(M) = 1. Since [V, E(M)] = 1 and V ∩ E(M) ≤
O2(M) = 1, we also have E(M) = 1, again by Lemma 7.2.

Later in this section, some arguments require that NG(Ua) ≤ La in the case where CG(a) < La.
The situation where F∗(La) is a p-group for some prime p is of particular interest and needs a bit
more work.

Lemma 7.11. Suppose that a ∈ H < G, that a ∈ Z∗(H) and that q is an odd prime. Then
Q := Oq(H)Oq(CH(a)) is the unique maximal CH(a)-invariant q-subgroup of H. Furthermore if
char(H) = q, then K∞(Q) is normal in H.

Proof. By hypothesis we have H = CH(a)O(H). Next we observe that Q is in fact a CH(a)-
invariant q-subgroup of H. Now suppose that Y ∈ IH(CH(a), q) is arbitrary. As CH(a) normalises
Y and q is odd, Lemma 3.6 yields [Y, a] ≤ Oq(H). Moreover CY (a) is normal in CH(a) and there-
fore lies in Oq(CH(a)). But then Coprime Action (a) yields Y = [Y, a]CY (a) ≤ Oq(H)Oq(CH(a)) =

Q. So every element of IH(CH(a), q) is contained in Q which means that I∗H(CH(a), q) = {Q}.
For the second assertion, suppose that char(H) = q and let W := O(H)Q. By Dedekind’s Law we
have Oq(W)Q = (O(H) ∩ Oq(W))Q ≤ Q and thus Oq(W) ≤ Q. We note that F∗(H) = Oq(H) ≤
Q ≤ W by hypothesis which implies F∗(H) ≤ F∗(W). Therefore

Oq(F∗(W)) ≤ CH(Oq(W)) ≤ CH(Oq(H)) = CH(F∗(H)) = Z(F∗(H))

which yields that F∗(W) also is a q-group. Now we can apply Theorem 3.9 and obtain K∞(Q) E
W. As CH(a) normalises Q, the subgroup K∞(Q) is invariant under both CH(a) and O(H). Thus
K∞(Q) is normal in H.

Lemma 7.12. Let q be an odd prime and suppose that P,Q ∈ I∗G(CG(a), q) are such that P∩Q ,
1. Then P = Q.

Proof. Assume that this is not true and choose P,Q ∈ I∗G(CG(a), q) to be distinct and such that
their intersection D , 1 is as large as possible. By Lemma 7.4 we have that G is simple and
therefore H := NG(D) is a proper subgroup of G. Next we note that, as P and Q are CG(a)-
invariant by hypothesis, CG(a) is contained in H. Hence W := Oq(H)Oq(CG(a)) ∈ IG(CG(a), q).
As V ≤ CG(a) ≤ H, we may apply Lemma 7.7 whence it follows that a ∈ Z∗(H). Thus Lemma

30



7.11 above yields that W is the unique maximal element of IH(CH(a), q). But NP(D) is a CG(a)-
invariant q-subgroup of H, so it follows that NP(D) ≤ W. Now we choose W∗ ∈ I∗G(CG(a), q)
to be such that W∗ contains W. Then D < NP(D) ≤ P ∩W ≤ P ∩W∗, so the choice of P and Q
implies P = W∗. Similarly Q = W∗ and hence P = Q, a contradiction.

Theorem 7.13. Suppose that CG(a) < La. Then La is the unique maximal subgroup of G con-
taining NG(Ua).

Proof. Let H be a maximal subgroup of G containing NG(Ua). Then we have CG(a) ≤ H and
La # H because Ua ≤ F(La). Lemma 7.7 yields that a is isolated in H and therefore a ∈ Z∗(H).
This implies that [a, E(H)] ≤ [Z∗(H), E(H)] = 1 and hence E(H) ≤ CG(a) ≤ La. We let
σ := π(F(La)) and show that F(H) is a σ-group in order to apply the Infection Theorem (4). Let
F := Fσ′ (H). Then by the Infection Theorem (1), we have F ∩ La ≤ Fσ′ (H) ∩ La = 1 which
means that F is inverted by a. Thus the choice of La implies that there exists a prime q ∈ σ such
that COq(La)(a) = 1. In particular T := Oq(La) is abelian and we have [T, a] = T ≤ NG(Ua) ≤ H.
As F is T -invariant and inverted by a, it follows that T = [T, a] centralises F. Therefore F ≤
CG(T ) ≤ La. Now we have F = F ∩ La = 1 and the Infection Theorem (4) forces La = H or
char(La) = char(H) = q.
Suppose that F∗(La) and F∗(H) are both q-groups. We recall that, as CG(a) is contained in
La and in H, Lemma 7.7 yields that a is isolated in La as well as in H. Thus a ∈ Z∗(La)
and a ∈ Z∗(H). Now we apply Lemma 7.11 to see that ILa (CG(a), q) has a unique maximal
element P and similarly IH(CG(a), q) has a unique maximal element Q. We even have P,Q ∈
IG(CG(a), q) because CG(a) is contained in La and H. Our hypothesis and Lemma 7.11 imply
that K∞(P) is normal in La and K∞(Q) is normal in H. Now choose P ≤ P∗ ∈ I∗G(CG(a), q).
Then NP∗ (P) ≤ NG(K∞(P)) = La, by Lemma 5.4 (2), whence P = P∗ because P∗ is a q-group.
Similarly Q ∈ I∗G(CG(a), q). Now let X := Z(Oq(La)). We note that 1 , X centralises Ua and
therefore lies in H. Furthermore X is CG(a)-invariant and thus contained in P and in Q. Finally
Lemma 7.12 forces P = Q. But then we have La = NG(K∞(P)) = NG(K∞(Q)) = H also in this
case, as stated.

Lemma 7.14. If a is isolated in G, then La = CG(a) or char(La) = q where q is an odd prime.

Proof. By Lemma 5.5, the involution a behaves like z . So we can apply Theorem 6.3 for a
instead of z . Moreover, if CG(a) < La, then E(La) = 1 by Lemma 7.10. This yields the
statement.

The following lemmas help us later when the Bender method returns to the scene.

Lemma 7.15. Suppose that q is a prime such that char(La) = q = char(Lb). Then a and b are
conjugate.

Proof. Assume that a and b are not conjugate. Then Lemma 7.3 implies that a and b are both
isolated in G. It follows from Lemma 4.1 (2) that V centralises O2(La). Thus if q = 2, then
V ≤ CLa (F∗(La)) ≤ F∗(La) and therefore La = CG(a) = CG(z) ≤ M. This contradicts Lemma
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5.10. Hence q is odd and a does not lie in Z(La) which in particular forces CG(a) < La. Moreover
we note that Ua ≤ Oq(La).
Choose Qa to be a V-invariant q-subgroup of G, containing Oq(La), such that ZJ(Qa) is invariant
under CK(a) and such that Qa is maximal subject to these constraints. Subgroups satisfying
these conditions exist – Oq(La) is an example. By Lemma 7.4 we have that G is simple and
thus NG(ZJ(Qa)) is a proper subgroup of G containing V , CK(a) and Qa. Let NG(ZJ(Qa)) be
contained in a maximal subgroup Ha of G. Then CK(a) ⊆ O(Ha) because z ∈ Z∗(Ha), by Lemma
5.2 (1). Now we have F∗(La) = Oq(La) ≤ Qa ≤ Ha and therefore La # Ha. On the other hand
the Basis Lemma (5) yields Ua ≤ Oq(Ha). So, as CG(a) < La, we appeal to Lemma 7.13 to
obtain Ha # La. By the Infection Theorem (3) it follows that La = Ha or char(Ha) = q. But as
char(La) = q by hypothesis, we have char(Ha) = q in both cases.
Now we deduce that Qa is a Sylow q-subgroup of G. By Corollary 7.9 we may choose Qa ≤ Q ∈
Sylq(Ha,V). We have char(Ha) = q and therefore char(QO(Ha)) = q, so we can apply Theorem
3.10 and obtain ZJ(Q) E QO(Ha)V . Hence ZJ(Q) is CK(a)-invariant and the choice of Qa yields
that Qa = Q ∈ Sylq(Ha). But NG(Qa) ≤ NG(ZJ(Qa)) ≤ Ha and hence Qa ∈ Sylq(NG(Qa)). It
follows that Qa is in fact a V-invariant Sylow q-subgroup of G.
We find Qb ∈ Sylq(G,V) and Hb with similar properties, arguing in the same way. By Remark
4.13 and since all involutions in V are isolated, we may choose x ∈ CG(V) such that Qx

a = Qb.
Then ZJ(Qa)x = ZJ(Qb) and thus we suppose that Hx

a = Hb. But CK(a) ⊆ Ha and it follows that
CK(a) = CK(a)x ⊆ Hx

a = Hb. This, by Corollary 7.5, forces G = 〈CK(a),CK(b)〉 to be contained
in Hb, a contradiction.

Lemma 7.16. Let q be an odd prime and let Q1, Q2 ∈ I∗G(V, q) be such that Q1 ∩ Q2 , 1. Then
Q1 and Q2 are conjugate under CG(V).

Proof. Assume that this is not the case and choose Q1 and Q2 such that they are not conjugate
under CG(V) and moreover such that D := Q1 ∩ Q2 , 1 is maximal. Let H := NG(D) and note
that, by Lemma 7.4, we have H < G. Then D, NQ1 (D) and NQ2 (D) are V-invariant subgroups
of H. We choose NQi (D) ≤ Q̂i ∈ I∗H(V, q). As q is odd and V ≤ O2′,2(H) by Lemma 5.2 (1),

we may apply Lemma 3.7 which yields an element h ∈ CH(V) such that Q̂1
h

= Q̂2. Now let
Q̂1 ≤ Q∗1 ∈ I∗G(V, q). Then Q̂2 ≤ Q∗1

h ∈ I∗G(V, q). Therefore we have D < NQ1 (D) ≤ Q1 ∩ Q∗1
and D < NQ2 (D) ≤ Q2 ∩ Q∗1

h. By our choice of Q1 and Q2, it follows that Q1 and Q∗1 as well as
Q2 and Q∗1

h are conjugate under CG(V), respectively. On the other hand h ∈ CH(V) which yields
a contradiction.

Lemma 7.17. There does not exist a prime q such that char(La) = q = char(Lb).

Proof. Assume that there is such a prime q. If q = 2, then z centralises O2(La) = F∗(La) by
Lemma 4.1 (2) and this implies that z ∈ O2(La). Hence z ∈ Z(La) contradicting Lemma 5.10.
We deduce that q is odd. By Lemma 7.15 we know that a and b are conjugate in G, but on the
other hand a is isolated in La by Lemma 7.7. Now the basic idea is to argue as in Lemma 7.15.
In order to do that, we show that there exist Q ∈ Sylq(La,V) and Q1 ∈ Sylq(Lb,V) such that
their intersection is non-trivial. Then we can apply Lemma 7.16 and use the same arguments as
before.
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Assume that such subgroups Q and Q1 do not exist and, with Corollary 7.9, let Q ∈ Sylq(La,V)
be arbitrary. From the same result it follows that Q ∩ Lb = 1. Hence Q is inverted by b, in
particular Q is abelian. So Q ≤ CLa (Oq(La)) = Z(Oq(La)) because char(La) = q. This implies
Q = Oq(La) = F∗(La) and forces NG(Q) to be contained in La (by Lemma 5.4 (2)). Therefore
Q is a Sylow q-subgroup of G. In particular Oq(M) is abelian, with Sylow’s Theorem. As q is
odd, we have a < Z(La). Thus CG(a) < La and in particular Ua ≤ Q. Since Ua = [Ua, a] is
abelian now, it is inverted by a. So Ua is inverted by a and b and therefore centralised by z. The
Basis Lemma (5) gives Ua ≤ Oq(M). But Oq(M) is abelian and therefore Oq(M) ≤ CG(Ua) ≤ La

by Theorem 7.13. Hence M infects La. By part (2) of the Infection Theorem it follows that
char(M) = q. Hence Q ≤ CM(F∗(M)) ≤ Oq(M) and thus F∗(La) = F∗(M), a contradiction
because M and La are distinct (Lemma 5.10).
Now we choose Q ∈ Sylq(La,V) and Q1 ∈ Sylq(Lb,V) such that Q ∩ Q1 , 1. Let Qa be a
V-invariant q-subgroup of G containing Oq(La) and such that ZJ(Qa) is CK(a)-invariant. Choose
Qa to be maximal subject to these constraints and let Ha be a maximal subgroup of G containing
NG(ZJ(Qa)). Then V lies in Ha and Lemma 7.7 yields that a and b are isolated in Ha. Applying
Corollary 7.9 we let Qa ≤ Q∗a ∈ Sylq(Ha,V). In particular, F∗(La) = Oq(La) ≤ Qa ≤ Ha and
hence La # Ha. The Basis Lemma (5) yields that Ua ≤ Op(Ha) and hence Ha # La with
Theorem 7.13. By the Infection Theorem (3), we have La = Ha or char(Ha) = q whence in
both cases it follows that char(Ha) = q. In particular char(Q∗aO(Ha)) = q, so we may appeal to
Theorem 3.10 and obtain ZJ(Q∗q) E Q∗aO(Ha)V . Thus ZJ(Q∗a) is CK(a)-invariant and the choice
of Qa yields that Qa = Q∗a ∈ Sylq(Ha). But NG(Qa) ≤ NG(ZJ(Qa)) ≤ Ha and hence Qa ∈

Sylq(NG(Qa)). It follows that Qa is in fact a V-invariant Sylow q-subgroup of G and so we may
suppose that Q ≤ Qa. Since a and b are conjugate, we have Qb ∈ I∗G(V, q) and a maximal
subgroup Hb of G with the corresponding properties and we may suppose that Q1 ≤ Qb.
As 1 , Q ∩ Q1 ≤ Qa ∩ Qb, Lemma 7.16 yields an x ∈ CG(V) such that Qx

a = Qb. Then
ZJ(Qa)x = ZJ(Qb) and thus we suppose that Hx

a = Hb. But CK(a) ⊆ Ha and therefore CK(a) =

CK(a)x ⊆ Hx
a = Hb. Then Corollary 7.5 implies that G ≤ Hb which is impossible.

Lemma 7.18. There does not exist a prime q such that char(M) = q = char(La).

Proof. Assume that there is such a prime q. If a and b are conjugate in G, then also char(Lb) = q
by our choice of La and Lb, and then Lemma 7.17 yields a contradiction. If a and b are isolated
in G, then we can interchange the roles of a, b and z as we like and apply Lemma 7.17. This
gives a contradiction again. By Lemma 7.3 there are no more cases to consider.

Theorem 7.19. CG(a) is a maximal subgroup of G.

Proof. Assume that this is false. Let F := F(La) (which equals F2′ (La) = F∗(La) by Lemma
7.10).

(1) [CF(z), a] , 1.

Proof. Assume that CF(z) ≤ CF(a). Then from Coprime Action (b) we deduce that
[F, a] ≤ [F, z] ∩ CG(b) and thus Ua ≤ Lb. By the Basis Lemma (5) we have that Ua ≤
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Op(Lb) for some prime p and by Lemma 7.13 it follows that Lb # La. Corollary 7.5 and
Lemma 7.17 imply that La and Lb are neither equal nor both of characteristic p. So parts
(3) and (5) of the Infection Theorem imply that Lb is not infected by La and that La and Lb

are not conjugate. By our hypothesis this means that a and b are not conjugate. Lemma
7.3 gives that a and b are isolated in G and then Lemma 7.14 forces char(La) = p. Now
the Infection Theorem (2) and the fact that 1 , Ua ≤ Op(Lb) yield that also char(Lb) = p,
a contradiction.

Let p ∈ π(F(La)) and let P := Op(La) be such that X := [CP(z), a] , 1. In particular [P, a] , 1
so that we may choose Ua ≤ P. Applying the Basis Lemma (4) we obtain that X ≤ [P ∩ M, a] ≤
Op(M) and therefore X ≤ CF(M)(z).

(2) C = M.

Proof. Assume that C < M. We choose M to be of characteristic p and such that NG(U) ≤
M, in the following way: By hypothesis, M ∈ M. So by Lemma 7.10 we have E(M) =

1 = O2(M) and thus Theorem 6.3 and the fact that 1 , X ≤ Op(M) imply that char(M) = p.
If NG(U) ≤ M, then we are done. Otherwise let H be a maximal subgroup of G containing
NG(U). Then C < H and M infects H. If it is possible to choose H ∈ M, then we do
this and then replace M by H. Otherwise, with parts (1) and (4) of the Infection Theorem
and since M , H, we deduce that char(H) = p. So we found a maximal subgroup of
characteristic p containing NG(U) (but not necessarily inM) in either case.

Now as X ≤ CF(M)(z), Lemma 6.6 yields [X,U] = 1 and therefore X is a U〈z〉-invariant
subgroup of Op(M). As C < M and NG(U) ≤ M, we may apply Lemma 6.9 and obtain that
NG(X) ≤ M or that NG(X) lies in a maximal subgroup of characteristic p. In both cases,
the fact that X ≤ F(La) implies that La infects a maximal subgroup of G of characteristic
p. But then, applying the Infection Theorem (2), we obtain char(La) = p contradicting
Lemma 7.18.

Now (2) and Lemma 5.7 imply that every z-invariant π-subgroup of G is contained in C = M.
In particular we have [Fπ(La), z] = 1. We already know that X ≤ Op(M) and therefore p ∈ π,
furthermore P ≤ C since P is z-invariant. This yields that Ua ≤ X = [P, a]EF, so X is normalised
by Ua〈a〉.

(3) M infects La and (therefore) Fπ′ (La) , 1 is inverted by z .

Proof. As Ua ≤ X ≤ Op(M), the first statement follows from Theorem 7.13. Then the fact
that M and La can neither be equal nor both of characteristic p (by Lemmas 5.10 and 7.18)
gives Fπ′ (La) , 1, because E(La) = 1. Moreover Fπ′ (La) is inverted by z by part (1) of the
Infection Theorem.

(4) NG(X) ≤ La.
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Proof. Suppose that NG(X) lies in a maximal subgroup H of G. Then as X ≤ F(La),
we have that La infects H. Moreover M # H because X ≤ Op(M), and M # La by
(3). The Basis Lemma (5) implies that Ua ≤ F(H) and therefore Lemma 7.13 yields that
we also have H # La. Now the Infection Theorem (3) forces H and La to be equal or
both of characteristic p. But if char(La) = p, then the Infection Theorem (2) implies that
char(M) = p, contradicting Lemma 7.18. Thus H = La.

(5) a and b are conjugate in G.

Proof. Assume that a and b are isolated. Then Ca < La implies that char(La) = p by
Lemma 7.14. But now, as F∗(La) = P ≤ M, it follows that La # M and then char(La) =

p = char(M) or M = La by (3) above and the Infection Theorem (4). This contradicts
Lemmas 5.10 and 7.18 and then Lemma 7.3 yields the result.

By our choice of La and Lb it follows that CG(b) < Lb and that Y := [Op(Lb), b] , 1. We also
recall that Fπ(La) is centralised by z by Lemma 5.7 and that Fπ′ (La) is inverted by z by (3). In
particular Fπ′ (La) is abelian. Now we have [La, z] ≤ CLa (F) ≤ F and together with Lemma 2.2
this implies La = CLa (z)Fπ′ (La).

(6) Y ≤ Op(M) and NG(Y) ≤ Lb. In particular M infects Lb.

Proof. This follows because a and b are conjugate in C by Lemma 4.2 and X ≤ Op(M).
Again by conjugacy, NG(Y) ≤ Lb and then M # Lb.

(7) Fπ′ (La) is inverted by b and by z and (therefore) centralised by a.

Proof. Let D := Fπ′ (La)∩CG(b). Then DEFπ′ (La) because Fπ′ (La) is abelian, moreover D
is invariant under CG(b)∩CG(a) = CC(b) = CC(a). Thus CG(a) ≤ CC(a)Fπ′ (La) normalises
D. But z inverts D ≤ CG(b), therefore D is contained in [CG(b), z] ≤ Fπ′ (Lb). As a and
b are conjugate, also Fπ′ (Lb) is abelian. In particular D E Fπ′ (Lb). We deduce that D is
CG(b)-invariant, because CG(b) = CC(b)Fπ′ (Lb), which means that by Corollary 7.5 we
have G ≤ 〈CG(a),CG(b)〉 ≤ NG(D). This is impossible.

(8) Op(M) � La.

Proof. Otherwise Y ≤ Op(M) ≤ La and it follows that Y ≤ Op(La) (by the Basis Lemma (4))
and then La # Lb by (6). Hence (5) above and Part (5) of the Infection Theorem force La

and Lb to be equal or both of characteristic p. But this is contradicted by Lemma 7.17 and
the fact that La and Lb are distinct (by Corollary 7.5).

(9) π ∩ π(F(La)) = {p}.
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Proof. Assume that there are two distinct primes p and q in π∩π(F(La)). Then P×Oq(La)
acts on Op(M) and we have [COp(M)(P),Oq(La)] ≤ Op(M) ∩ Oq(La) = 1. By Thompson’s
P×Q-Lemma it follows that [Op(M),Oq(La)] = 1 and therefore Op(M) ≤ La, contradicting
(8).

(10) Let P0 := P ∩ Op(M). Then X = P0 E La is a cyclic group which is inverted by a and b.

Proof. First assume that Ω := Ω1(Z(Op(M))) ≤ P0. Then as Ω ≤ P, we have Fπ′ (La) ≤
CG(Ω) ≤ M which is a contradiction. Thus Ω � P0.

Now assume that P0 is not cyclic. Then let W1 ≤ P0 be elementary abelian of order p2

and let W1 ≤ W ≤ W1Ω be such that W is elementary abelian of order p3. As M = C,
we may apply Theorem 6.19 and obtain CG(w) ≤ M for all w ∈ W#. On the other hand
W1 ≤ P and thus Op′ (La) ≤ CG(W1). This implies Fπ′ (La) ≤ Op′ (La) ≤ M, a contradiction.
We conclude that P0 is cyclic and that, therefore, a and b invert it. It follows that X ≤
P0 = [P0, a] ≤ [P, a] = X. By (9) we have Fπ′ (La) = Fp′ (La). Since X = P ∩ Op(M) is
CLa (z)-invariant, the fact that La = CLa (z)Fp′ (La) yields that X is normal in La.

(11) For all primes q , p, a Sylow q-subgroup of La is centralised by a.

Proof. As X is inverted by a (by (10)) and P = CP(a)X by Coprime Action (a), we have
that [La, a] centralises X and (since X E La) also P/X. Moreover (7) and (9) yield that
[Fp′ (La), a] = 1 and therefore [La, a] centralises Fp′ (La). This implies that [La, a] ≤
Op(La)CLa (F∗(La)) = Op(La) = P.

Let q , p be prime and let Q ∈ Sylq(La). As a is isolated in La, we may suppose, with
Corollary 7.9, that Q is a-invariant. But then [Q, a] ≤ [La, a] ∩ Q ≤ P ∩ Q = 1.

Let q ∈ π′ ∩ π(F) and, with Corollary 7.9, let Q ∈ Sylq(La,V). Then Q is centralised by a, but
not by z because z inverts Fp′ (La) by (7) and (9). Therefore if a ∈ T ∈ Syl2(CG(Q)), then a is
the unique involution in T (by Lemma 7.6) and therefore NG(T ) ≤ CG(a). Using the Frattini
argument we obtain NG(Q) = CG(Q)NNG(Q)(T ) ≤ CG(Q)CG(a) ≤ La which implies Q ∈ Sylq(G).
But then by Lemmas 4.12 and 4.14 and since Q � C, it follows that a and b are not conjugate.
This contradicts (5) and finishes the proof of the theorem.

Lemma 7.20. a and b are isolated.

Proof. We have z < Z(La) by Lemma 5.10. Therefore and by Lemma 5.2 (1) there exists a prime
q ∈ π(F(La)) such that Oq(La) is not centralised by z . Let Q ∈ Sylq(La,V) with Corollary 7.9.
Then CG(Q) ≤ CG(Oq(La)) ≤ La and Q is centralised by a (because La = CG(a) by Theorem
7.19), but not by z . Now we let a ∈ T ∈ Syl2(CG(Q)) and argue as in the last paragraph
in the proof of the previous theorem. As r2(G) = 2 by Lemma 7.6, it follows that a is the
unique involution in T and we have [a,NG(T )] = 1. Using a Frattini argument, we obtain
NG(Q) = CG(Q)NNG(Q)(T ) ≤ CG(Q)CG(a) ≤ La. Thus Q ∈ Sylq(G). But Q is contained in CG(a)
and no Sylow q-subgroup of G lies in C by Lemma 4.12 and because Q is not centralised by z .
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Therefore we can apply Lemma 4.14 which says that a and b are not conjugate in G. Finally
Lemma 7.3 forces a and b to be isolated in G.

Theorem 7.21. S contains precisely three involutions, they are all isolated and their centralisers
are maximal subgroups of G.

Proof. By Lemma 7.6 we have r(S ) = 2. Also Lemmas 7.20 and 4.1 (2) imply that V ≤ Z(S ).
Together this yields that V = Ω1(S ) and hence that {a, b, z} is precisely the set of involutions in
S . Again by Lemma 7.20 we may interchange the roles of z, a and b as we like, so Theorem 7.19
yields that the centralisers C, CG(a) and CG(b) are maximal subgroups.

Theorem 7.21 and Lemmas 7.4 and 7.6 establish Theorem B.

8. The Soluble Z∗-Theorem

After a few preparatory results, we show that C/O(C) possesses at least one component (and
therefore C is not soluble) if Hypothesis 5.1 holds. Then we can prove the Soluble Z∗-Theorem.

Lemma 8.1. Assume Hypothesis 5.1. Suppose that M = C and let π := π(F(M)). Let a ∈
M\{z} be an involution, let La be a maximal subgroup of G containing CG(a) and suppose that
O(F(M)) ∩ La , 1. Then [La, z] is contained in Fπ′ (La).

Proof. Define L0 := [La, z]. Then by Lemma 5.8 we have that L0 is a π′-group. We set D :=
O(F(M))∩La and see that D×〈z〉 acts coprimely on L0. As [CL0 (z),D] ≤ CL0 (z)∩O(F(M)) = 1,
it follows that CL0 (z) ≤ CL0 (D). This means that we can apply Theorem 3.15 which yields that
[CL0 (D), z] is normal in L0 and that [L0,D] is a nilpotent normal subgroup of L0. Let CG(D)D
be contained in a maximal subgroup H of G. Then z ∈ H and Lemma 5.2 (1) implies that H0 :=
[H, z] ≤ O(H). So H0 is a soluble π′-group, again by Lemma 5.8. Moreover M # H because
D ≤ F(M). With part (1) of the Infection Theorem we deduce that M ∩ H0 ≤ M ∩ Fπ′ (H) = 1
and that, therefore, H0 is inverted by z . But this means that H0 is an abelian normal subgroup of
H and in particular H0 ≤ F(H). Now we have

[CL0 (D), z] ≤ [CG(D), z] ∩CL0 (D) ≤ H0 ∩CL0 (D) ≤ F(H) ∩CL0 (D) ≤ F(CL0 (D)).

Hence [CL0 (D), z] is nilpotent and normal in L0 by the previous paragraph, i.e. [CL0 (D), z] ≤
F(L0). By Coprime Action (a), it follows that L0 = CL0 (D)[L0,D] and finally

L0 = [L0, z] ≤ [CL0 (D), z][L0,D, z] ≤ F(L0) ≤ Fπ′ (La)

as stated.

Lemma 8.2. Assume Hypothesis 7.1 and further that [M, a] � F(M). Then [La, z] ≤ F(La) and
[Lb, z] ≤ F(Lb).
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Proof. Theorem 7.21 yields that CG(v) = Lv for all v ∈ V# and that we can interchange the roles
of a, b and z . As [M, a] � F(M) by hypothesis, we can conclude, applying Lemma 8.1 with a
and z interchanged, that O(F(La))∩M = 1. Thus O(F(La)) is inverted by z . On the other hand z
centralises O2(La) as well as E(La) (by Lemmas 4.1 (2) and 5.2 (1)) and thus F∗(La) is centralised
by [La, z]. Therefore [La, z] ≤ CLa (F∗(La)) ≤ F(La) as stated. Similarly [Lb, z] ≤ F(Lb).

Lemma 8.3. Assume Hypothesis 7.1, let p be a prime and let P ∈ Sylp(G,V). Then there exists
an involution v ∈ V such that [P, v] = 1.

Proof. By Theorem 7.21, a and b are isolated and the centralisers of a, b and z are maximal
subgroups. Therefore the result follows from Lemma 5.7 if p is contained in one of the sets π,
π(F(La)) or π(F(Lb)). Now suppose that [P, z] , 1. Then in particular P � M = C and p < π
by Lemma 5.7. Hence Corollary 4.10 implies that without loss of generality p divides |CK(a)|
and therefore |[La, z]|, by Lemma 5.2 (1). If [La, z] � F(La), then Lemma 8.2 with a in the role
of z yields [M, a] ≤ F(M) and [Lb, a] ≤ F(Lb). We are done if p ∈ π(F(Lb)), so let us assume
that this is not the case. Then it follows that a centralises every V-invariant p-subgroup of M
and of Lb. In particular [CP(z), a] = 1 = [CP(b), a] because P is V-invariant. But by Coprime
Action (b) this forces [P, a] = 1. On the other hand if [La, z] ≤ F(La), then p ∈ π(F(La)) and we
are done.

Lemma 8.4. Assume Hypothesis 7.1. Then C/O(C) is perfect.

Proof. Assume not and let C := C/O(C). Then C
′
< C, i.e. C possesses a non-trivial abelian

factor group. As O(CG(V)) ≤ O(C) by Lemma 3.5, we have O(CG(V)) = O(C) ∩ CG(V) and
therefore C ' CG(V)/O(CG(V)). Now CG(V)/O(CG(V)) possesses a non-trivial abelian factor
group. We note that v is isolated and CG(v) = Lv is a maximal subgroup for all v ∈ V# by Theorem
7.21. So, arguing as for C in the previous paragraph, we see that Lv/O(Lv) ' CG(V)/O(CG(V))
for all v ∈ V#. This means that C, La/O(La) and Lb/O(Lb) have a non-trivial p-factor group,
respectively, for some prime p. On the other hand at least one of these maximal subgroups
contains a Sylow p-subgroup of G by Lemma 4.13 (recall that a, b and z are isolated) and Lemma
8.3. Now Lemmas 4.2 and 3.8 and the fact that G is simple (Lemma 7.4) yield a contradiction.

Theorem 8.5. Assume Hypothesis 5.1. Then C/O(C) possesses at least one component.

Proof. Let C := C/O(C) and assume that E(C) = 1. Let T ∈ Syl2(O2′,2(C)).
First assume that Hypothesis 7.1 holds, so r(T ) ≥ 2. Then Theorem 7.21 implies that T contains
precisely three involutions. By hypothesis we have F∗(C) = O2(C) = T and therefore CC(T ) ≤
T . Now we apply Theorem 3.16 to deduce that C is soluble. On the other hand C is perfect by
Lemma 8.4, i.e. C is trivial, a contradiction.
Thus r2(O2′,2(C)) = 1 and T is cyclic or quaternion. In the first case, Aut(T ) is a cyclic 2-group
and we deduce [O2(C),T ] = 1 and thus [C,T ] = 1. This is impossible because T = F∗(C). In
the second case, for similar reasons, T ' Q8 since the automorphism groups of larger quaternion
groups are 2-groups. We note that Aut(Q8) ' S 4.
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By Lemma 5.3 we have G = 〈z〉F∗(G) where N := F∗(G) is simple. But T is quaternion with
central involution z, so z ∈ T ′ ≤ G′ = N which forces G = N to be simple. Corollary 4.3 yields
O2(C) = C. In particular, C/CC(T ) is isomorphic to a subgroup of A4. Let T ≤ S ∈ Syl2(G).
Then by the previous paragraph, S induces inner automorphisms on T and it follows that S =

T ' Q8, contradicting Lemma 5.2 (2).

Proof of the Soluble Z∗-Theorem.
Assume that G is a minimal counterexample to the Soluble Z∗-Theorem. Let z ∈ G be an
isolated involution such that C := CG(z) is soluble, and assume that z < Z∗(G). If z ∈ H < G,
then H = CH(z)O(H) and thus H is soluble.
Let t ∈ G be an involution. Lemma 4.1 (2) and Sylow’s Theorem imply that CG(t) contains
a conjugate of z . So CG(t) is soluble by the previous paragraph. From the minimality of G
and the fact that every involution centraliser is soluble, it follows that the Z∗-Theorem holds in
every proper subgroup and every proper section of G. This means that if we let M be a maximal
subgroup of G containing C, then Hypothesis 5.1 is satisfied.
In particular, Theorem 8.5 is applicable and yields that C/O(C) has at least one component. This
is impossible because, by hypothesis, C is soluble.
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